Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 29(Suppl 1): S11517, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223679

RESUMEN

Significance: Photoacoustic Doppler flowmetry offers quantitative blood perfusion information in addition to photoacoustic vascular contrast for rectal cancer assessment. Aim: We aim to develop and validate a correlational Doppler flowmetry utilizing an acoustic resolution photoacoustic microscopy (AR-PAM) system for blood perfusion analysis. Approach: To extract blood perfusion information, we implemented AR-PAM Doppler flowmetry consisting of signal filtering and conditioning, A-line correlation, and angle compensation. We developed flow phantoms and contrast agent to systemically investigate the flowmetry's efficacy in a series of phantom studies. The developed correlational Doppler flowmetry was applied to images collected during in vivo AR-PAM for post-treatment rectal cancer evaluation. Results: The linearity and accuracy of the Doppler flow measurement system were validated in phantom studies. Imaging rectal cancer patients treated with chemoradiation demonstrated the feasibility of using correlational Doppler flowmetry to assess treatment response and distinguish residual cancer from cancer-free tumor bed tissue and normal rectal tissue. Conclusions: A new correlational Doppler flowmetry was developed and validated through systematic phantom evaluations. The results of its application to in vivo patients suggest it could be a useful addition to photoacoustic endoscopy for post-treatment rectal cancer assessment.


Asunto(s)
Técnicas Fotoacústicas , Neoplasias del Recto , Humanos , Flujometría por Láser-Doppler/métodos , Reología/métodos , Microscopía Acústica/métodos , Acústica , Neoplasias del Recto/diagnóstico por imagen , Técnicas Fotoacústicas/métodos
2.
Biomed Opt Express ; 14(5): 2015-2027, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206148

RESUMEN

Identifying complete response (CR) after rectal cancer preoperative treatment is critical to deciding subsequent management. Imaging techniques, including endorectal ultrasound and MRI, have been investigated but have low negative predictive values. By imaging post-treatment vascular normalization using photoacoustic microscopy, we hypothesize that co-registered ultrasound and photoacoustic imaging will better identify complete responders. In this study, we used in vivo data from 21 patients to develop a robust deep learning model (US-PAM DenseNet) based on co-registered dual-modality ultrasound (US) and photoacoustic microscopy (PAM) images and individualized normal reference images. We tested the model's accuracy in differentiating malignant from non-cancer tissue. Compared to models based on US alone (classification accuracy 82.9 ± 1.3%, AUC 0.917(95%CI: 0.897-0.937)), the addition of PAM and normal reference images improved the model performance significantly (accuracy 92.4 ± 0.6%, AUC 0.968(95%CI: 0.960-0.976)) without increasing model complexity. Additionally, while US models could not reliably differentiate images of cancer from those of normalized tissue with complete treatment response, US-PAM DenseNet made accurate predictions from these images. For use in the clinical settings, US-PAM DenseNet was extended to classify entire US-PAM B-scans through sequential ROI classification. Finally, to help focus surgical evaluation in real time, we computed attention heat maps from the model predictions to highlight suspicious cancer regions. We conclude that US-PAM DenseNet could improve the clinical care of rectal cancer patients by identifying complete responders with higher accuracy than current imaging techniques.

3.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939255

RESUMEN

Ovarian cancer remains the deadliest of all the gynecological malignancies due to the lack of reliable screening tools for early detection and diagnosis. Photoacoustic imaging or tomography (PAT) is an emerging imaging modality that can provide the total hemoglobin concentration (relative scale, rHbT) and blood oxygen saturation (%sO2) of ovarian/adnexal lesions, which are important parameters for cancer diagnosis. Combined with coregistered ultrasound (US), PAT has demonstrated great potential for detecting ovarian cancers and for accurately diagnosing ovarian lesions for effective risk assessment and the reduction of unnecessary surgeries of benign lesions. However, PAT imaging protocols in clinical applications, to our knowledge, largely vary among different studies. Here, we report a transvaginal ovarian cancer imaging protocol that can be beneficial to other clinical studies, especially those using commercial ultrasound arrays for the detection of photoacoustic signals and standard delay-and-sum beamforming algorithms for imaging.


Asunto(s)
Quistes Ováricos , Neoplasias Ováricas , Técnicas Fotoacústicas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Técnicas Fotoacústicas/métodos , Ultrasonografía/métodos
4.
Nat Commun ; 13(1): 6518, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316354

RESUMEN

Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.


Asunto(s)
Implantes Absorbibles , Electrónica , Semiconductores , Electrodos , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...