Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 30(3): 369-382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633272

RESUMEN

The Cellulose Synthase gene (CS) superfamily and COBRA-like (COBL) gene family are essential for synthesizing cellulose and hemicellulose, which play a crucial role in cell wall biosynthesis and the hardening of plant tissues. Our study identified 126 ZbCS and 31 ZbCOBL genes from the Zanthoxylum bungeanum (Zb) genome. Phylogenetic analysis and conservative domain analysis unfolded that ZbCS and ZbCOBL genes were divided into seven and two subfamilies, respectively. Gene duplication data suggested that more than 75% of these genes had tandem and fragment duplications. Codon usage patterns analysis indicated that the ZbCS and ZbCOBL genes prefer ending with A/T base, with weak codon preference. Furthermore, seven key ZbCS and five key ZbCOBL genes were identified based on the content of cellulose and hemicellulose and the expression characteristics of ZbCS and ZbCOBL genes in various stages of stipule thorns. Altogether, these results improve the understanding of CS and COBL genes and provide valuable reference data for cultivating Zb with soft thorns. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01432-x.

2.
Cell Death Dis ; 15(3): 235, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531846

RESUMEN

Ubiquitin-specific protease 3 (USP3) plays an important role in the progression of various tumors. However, the role of USP3 in osteosarcoma (OS) remains poorly understood. The aim of this study was to explore the biological function of USP3 in OS and the underlying molecular mechanism. We found that OS had higher USP3 expression compared with that of normal bone tissue, and high expression of USP3 was associated with poor prognosis in patients with OS. Overexpression of USP3 significantly increased OS cell proliferation, migration, and invasion. Mechanistically, USP3 led to the activation of the PI3K/AKT signaling pathway in OS by binding to EPHA2 and then reducing its protein degradation. Notably, the truncation mutant USP3-F2 (159-520) interacted with EPHA2, and amino acid 203 was found to play an important role in this process. And knockdown of EPHA2 expression reversed the pro-tumour effects of USP3-upregulating. Thus, our study indicates the USP3/EPHA2 axis may be a novel potential target for OS treatment.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Transducción de Señal , Proliferación Celular , Osteosarcoma/patología , Neoplasias Óseas/patología , Movimiento Celular , Proteasas Ubiquitina-Específicas/metabolismo
3.
Eur J Pharmacol ; 963: 176249, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070637

RESUMEN

Osteosarcoma (OS) is the most common malignant bone tumor. Fatty acid reprogramming plays an essential role in OS progression. However, new fatty acid related therapeutic targets of OS have not been completely elucidated. Therefore, we firstly identified 113 differentially expressed fatty acid metabolism genes using bioinformatic analysis, 19 of which were found to be associated with OS prognosis. Then, 7 hub genes were screened out and yielded a strong prediction accuracy (AUC value = 0.88, at 3 years) for predicting the survival status of OS patients. Furthermore, we confirmed that SCD was highly expressed in OS cells and patients. And Knock-down of SCD impaired proliferation and migration of OS cells. Moreover, SCD was transcriptionally activated by c-Myc to promote proliferation and migration of OS cells. Finally, SCD inhibitor could significantly induce OS ferroptosis in vitro and in vivo. In conclusion, we identified that SCD was a reliable risk factor for OS patients. And SCD was activated by c-Myc. The inhibitor of SCD could significantly impaired OS growth and induce OS ferroptosis, which indicated that SCD was a potential drug target for OS treatment.


Asunto(s)
Osteosarcoma , Estearoil-CoA Desaturasa , Humanos , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Ácidos Grasos/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética
4.
Aging (Albany NY) ; 15(18): 9590-9613, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37724907

RESUMEN

YY1 affects tumorigenesis and metastasis in multiple ways. However, the function of YY1 and the potential mechanisms through which it operates in gastric cancer (GC) progression by regulating autophagy remains poorly understood. This study aimed to assess the essential transcription factors (TFs) involved in autophagy regulation in GC. Western blot, RFP-GFP-LC3 double fluorescence and transmission electron microscopy (TEM) assays were used to probe autophagy activity in GC cells. Methylated RNA immunoprecipitation (MeRIP) was utilized to evaluate the ALKBH5-regulated m6A levels of YY1. Gain- and loss-of-function assays were employed in the scrutiny of the biological effects of the ALKBH5/YY1/ATG4B axis on cancer cell proliferation and invasion abilities in vitro. Per the findings, YY1 was identified as a crucial transcriptional activator of cancer autophagy-related genes and promoted the proliferation and aggressiveness of cancer cells associated with enhanced ATG4B-mediated autophagy. However, ectopic ALKBH5 expression abolished the YY1-induced effect via m6A modification. Importantly, YTHDF1 facilitated the mRNA stability of YY1 through m6A recognition. Collectively, this study found that YY1 was regulated by ALKBH5 and YTHDF1-mediated m6A modification and served as an autophagy-dependent tumor driver to accelerate cancer progression through ATG4B transactivation, providing an exploitable therapeutic target for GC.

5.
Eur J Pharmacol ; 957: 176009, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619784

RESUMEN

Osteosarcoma (OS) is a highly fatal bone tumor characterized by high degree of malignancy and early lung metastasis. Traditional chemotherapy fails in improving the efficacy and survival rate of patients with OS. Butyrate (NaBu) has been reported as a new antitumor drug for inhibiting proliferation and inducing apoptosis in various cancer cells. However, the effect of NaBu on the ferroptosis of OS is still unknown. This study aimed to investigate whether NaBu promotes erastin-induced ferroptosis in OS cells and to uncover the underlying mechanism. Here, we found that NaBu significantly enhanced erastin-induced ferroptosis in vitro and in vivo. Compared with the group that erastin used alonely, pre-treating with NaBu exacerbated erastin-meditated GSH depletion, lipid peroxidation, and mitochondrial morphologic changes in OS cells. In a subcutaneous OS model, NaBu combined with erastin significantly reduced tumor growth and increased the levels of 4-HNE. Mechanistically, NaBu downregulated SLC7A11 transcription via regulating ATF3 expression. Overexpression of ATF3 facilitated erastin to induce ferroptosis, while ATF3 knockdown attenuated NaBu-induced ferroptosis sensitivity. In conclusion, our findings revealed a previously unidentified role of NaBu in erastin-induced ferroptosis by regulating SLC7A11, suggesting that NaBu may be a potential therapeutic agent for OS treatment.


Asunto(s)
Neoplasias Óseas , Ferroptosis , Osteosarcoma , Humanos , Butiratos , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Sistema de Transporte de Aminoácidos y+/genética , Factor de Transcripción Activador 3
6.
J Cancer ; 14(6): 916-926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151387

RESUMEN

MYC proto-oncogene (MYC) is a transcription factor among the most commonly activated oncoproteins, playing vital roles in lipid metabolism and tumor aggressiveness with broad effects. However, it is still largely unknown about the regulating mechanisms of MYC in osteosarcoma (OS). In this study, we identify a circRNA with Reduced Expression in OS (termed as circREOS) generated from MYC gene, as a novel regulator of MYC and OS progression. CircREOS is down-regulated in OS cells and localized in the nucleus. CircREOS suppresses MYC expression, lipid metabolism and growth, invasion in OS cells. Mechanically, circREOS physically interacts with HuR (human antigen R) protein, and subsequently restrains its binding and activation on the 3'-UTR (untranslated region) of MYC mRNA, resulting in down-regulation of MYC and inhibition of OS. Moreover, circREOS serves as a tumor suppressor via targeting lipid metabolism. CircREOS reduces FASN expression and lipid accumulation through inhibiting MYC-facilitated FASN regulation. Taken together, these results indicate that circREOS suppress lipid synthesis and OS progression through inhibiting HuR-mediated MYC activation, providing a potential therapeutic target for OS.

7.
J Orthop Translat ; 39: 63-73, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37188000

RESUMEN

Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause huge economic losses every year. The healing process after an injury is complex and is dependent on the surrounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their phenotypes progressively transform as they regenerate. As the "sensor and switch of the immune system", mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex transitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing. Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective therapeutic strategy for TBI injuries. The Translational potential of this article: This paper reviewed the important functions of macrophages and mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing after restoration surgery.

8.
Physiol Mol Biol Plants ; 29(2): 239-251, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36875724

RESUMEN

Codon usage bias (CUB) reveals the characteristics of species and can be utilized to understand their evolutionary relationship, increase the target genes' expression in the heterologous receptor plants, and further provide theoretic assistance for correlative study on molecular biology and genetic breeding. The chief aim of this work was to analyze the CUB in chloroplast (cp.) genes in nine Elaeagnus species to provide references for subsequent studies. The codons of Elaeagnus cp. genes preferred to end with A/T bases rather than with G/C bases. Most of the cp. genes were prone to mutation, while the rps7 genes were identical in sequences. Natural selection was inferred to have a powerful impact on the CUB in Elaeagnus cp. genomes, and their CUB was extremely strong. In addition, the optimal codons were identified in the nine cp. genomes based on the relative synonymous codon usage (RSCU) values, and the optimal codon numbers were between 15 and 19. The clustering analyses based on RSCU were contrasted with the maximum likelihood (ML)-based phylogenetic tree derived from coding sequences, suggesting that the t-distributed Stochastic Neighbor Embedding clustering method was more appropriate for evolutionary relationship analysis than the complete linkage method. Moreover, the ML-based phylogenetic tree based on the conservative matK genes and the whole cp. genomes had visible differences, indicating that the sequences of specific cp. genes were profoundly affected by their surroundings. Following the clustering analysis, Arabidopsis thaliana was considered the optimal heterologous expression receptor plant for the Elaeagnus cp. genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01289-6.

9.
CNS Neurosci Ther ; 29(4): 1094-1108, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36627822

RESUMEN

BACKGROUND: A growing body of research shows that drug monomers from traditional Chinese herbal medicines have antineuroinflammatory and neuroprotective effects that can significantly improve the recovery of motor function after spinal cord injury (SCI). Here, we explore the role and molecular mechanisms of Alpinetin on activating microglia-mediated neuroinflammation and neuronal apoptosis after SCI. METHODS: Stimulation of microglia with lipopolysaccharide (LPS) to simulate neuroinflammation models in vitro, the effect of Alpinetin on the release of pro-inflammatory mediators in LPS-induced microglia and its mechanism were detected. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of Alpinetin on activating microglia-mediated neuronal apoptosis. Finally, rat spinal cord injury models were used to study the effects on inflammation, neuronal apoptosis, axonal regeneration, and motor function recovery in Alpinetin. RESULTS: Alpinetin inhibits microglia-mediated neuroinflammation and activity of the JAK2/STAT3 pathway. Alpinetin can also reverse activated microglia-mediated reactive oxygen species (ROS) production and decrease of mitochondrial membrane potential (MMP) in PC12 neuronal cells. In addition, in vivo Alpinetin significantly inhibits the inflammatory response and neuronal apoptosis, improves axonal regeneration, and recovery of motor function. CONCLUSION: Alpinetin can be used to treat neurodegenerative diseases and is a novel drug candidate for the treatment of microglia-mediated neuroinflammation.


Asunto(s)
Flavonas , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Ratas , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Janus Quinasa 2/efectos de los fármacos , Janus Quinasa 2/metabolismo , Lipopolisacáridos , Microglía , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Flavonas/farmacología , Flavonas/uso terapéutico , Factor de Transcripción STAT3/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
11.
Biochem Biophys Res Commun ; 583: 146-153, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34763194

RESUMEN

Osteolytic disorders are characterized by impaired bone volume and trabecular structure that leads to severe fragility fractures. Studies have shown that excessive osteoclast activity causes impaired bone microstructure, a sign of osteolytic diseases such as osteoporosis. Approaches of inhibiting osteoclastogenesis and bone resorption specifically could prevent osteoporosis and other osteolytic disorders. Acacetin is a potent molecule extracted from plants with anti-cancer and anti-inflammatory bioactivities. Here, we demonstrated, for the first time, that acacetin repressed osteoclastogenesis, formation of F-actin rings, bone resorption activity, and osteoclast-related gene expression in vitro through modulating ERK, P38, and NF-κB signaling pathways and preventing expression of NFATc1. Micro-CT and H & E staining results indicated that acacetin alleviated LPS-induced osteolysis in vivo. Overall, our findings suggested that acacetin could help to prevent osteoporosis and other osteoclast-related osteolytic disorders.

13.
Int Orthop ; 45(5): 1125-1136, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33459826

RESUMEN

INTRODUCTION: Mechanical loading enhances the progression of osteoarthritis. However, its molecular mechanisms have not been established. OBJECTIVE: The aim of this review was to summarize the probable mechanisms of mechanical load-induced osteoarthritis. METHODS: A comprehensive search strategy was used to search PubMed and EMBASE databases (from the 15th of January 2015 to the 20th of October 2020). Search terms included "osteoarthritis", "mechanical load", and "mechanism". RESULTS: Abnormal mechanical loading activates the interleukin-1ß, tumour necrosis factor-α, nuclear factor kappa-B, Wnt, transforming growth factor-ß, microRNAs pathways, and the oxidative stress pathway. These pathways induce the pathological progression of osteoarthritis. Mechanical stress signal receptors such as integrin, ion channel receptors, hydrogen peroxide-inducible clone-5, Gremlin-1, and transient receptor potential channel 4 are present in the articular cartilages. CONCLUSION: This review highlights the molecular mechanisms of mechanical loading in inducing chondrocyte apoptosis and extracellular matrix degradation. These mechanisms provide potential targets for osteoarthritis prevention and treatment.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Condrocitos , Humanos , Osteoartritis/etiología , Estrés Mecánico
14.
Front Mol Biosci ; 8: 705148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071320

RESUMEN

Objective: Hypoxic tumors contribute to local failure and distant metastases. Nevertheless, the molecular hallmarks of hypoxia remain ill-defined in osteosarcoma. Here, we developed a hypoxic gene signature in osteosarcoma prognoses. Methods: With the random survival forest algorithm, a prognostic hypoxia-related gene signature was constructed for osteosarcoma in the TARGET cohort. Overall survival (OS) analysis, receiver operating characteristic (ROC) curve, multivariate cox regression analysis, and subgroup analysis were utilized for assessing the predictive efficacy of this signature. Also, external validation was presented in the GSE21257 cohort. GSEA was applied for signaling pathways involved in the high- and low-risk samples. Correlation analyses between risk score and immune cells, stromal/immune score, immune checkpoints, and sensitivity of chemotherapy drugs were performed in osteosarcoma. Then, a nomogram was built by integrating risk score, age, and gender. Results: A five-hypoxic gene signature was developed for predicting survival outcomes of osteosarcoma patients. ROC curves confirmed that this signature possessed the well predictive performance on osteosarcoma prognosis. Furthermore, it could be independently predictive of prognosis. Metabolism of xenobiotics by cytochrome P450 and nitrogen metabolism were activated in the high-risk samples while cell adhesion molecules cams and intestinal immune network for IgA production were enriched in the low-risk samples. The low-risk samples were characterized by elevated immune cell infiltrations, stromal/immune scores, TNFRSF4 expression, and sensitivity to cisplatin. The nomogram accurately predicted 1-, 3-, and 5-years survival duration. Conclusion: These findings might offer an insight into the optimization of prognosis risk stratification and individualized therapy for osteosarcoma patients.

15.
J Biomed Nanotechnol ; 16(6): 885-898, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33187584

RESUMEN

The surface modification of titanium is effective in promoting osseointegration and is widely used in the treatment of bone diseases. Epimedii Folium (EF) plays an important role in the treatment of metabolic bone diseases. However, few studies have so far been reported on their combined use in such treatments. In the present study, EF water extract was coated onto the surface of TiO2 nanotubes (TNT) by electrochemical anodization to obtain EF-TNT. Through analysis of surface morphology characteristics, it was demonstrated that EF was successfully coated on the surface of TiO2 nanotubes. In vitro drug release data suggested that the quantity of EF water extract released was a significant quantity over 4 days, reaching a total of 80%, the release continuing in total for approximately 2 weeks. By using scanning electron microscopy and immunofluorescent staining, it was found that, EF-TNT more strongly promoted adhesion, proliferation, and differentiation of MC3T3-E1 osteoblasts compared with Ti and TNT. Quantitative reverse transcript polymerase chain reaction (qRT-PCR) analysis indicated that the expression of key genes for proliferation and differentiation of osteoblasts, such as COL1a1, ALP, OPN, and Runx2, were up-regulated by EF-TNT. Network pharmacology analysis suggested that EF water extract not only regulated the proliferation and differentiation of osteoblasts but also caused a regulatory effect on osteoclasts via multiple signaling pathways, such as RANKL-RANK-induced signaling and TGF-ß signaling. These findings indicate that the EF-TNT promotes differentiation and proliferation of osteoblasts, and represents considerable potential for use in clinical applications.


Asunto(s)
Nanotubos , Agua , Diferenciación Celular , Proliferación Celular , Medicamentos Herbarios Chinos , Osteoblastos , Propiedades de Superficie , Titanio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...