Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 15009, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436435

RESUMEN

Integral membrane proteins of the divalent anion/Na+ symporter (DASS) family translocate dicarboxylate, tricarboxylate or sulphate across cell membranes, typically by utilizing the preexisting Na+ gradient. The molecular determinants for substrate recognition by DASS remain obscure, largely owing to the absence of any substrate-bound DASS structure. Here we present 2.8-Å resolution X-ray structures of VcINDY, a DASS from Vibrio cholerae that catalyses the co-transport of Na+ and succinate. These structures portray the Na+-bound VcINDY in complexes with succinate and citrate, elucidating the binding sites for substrate and two Na+ ions. Furthermore, we report the structures of a humanized variant of VcINDY in complexes with succinate and citrate, which predict how a human citrate-transporting DASS may interact with its bound substrate. Our findings provide insights into metabolite transport by DASS, establishing a molecular basis for future studies on the regulation of this transport process.


Asunto(s)
Aniones/metabolismo , Proteínas Bacterianas/metabolismo , Sodio/metabolismo , Simportadores/metabolismo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Transporte Biológico , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Ácido Succínico/química , Ácido Succínico/metabolismo , Simportadores/química , Simportadores/genética , Vibrio cholerae/genética
2.
J Biol Chem ; 291(18): 9818-26, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26975373

RESUMEN

Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance by extruding different drugs across cell membranes. The MATE transporters alternate between their extracellular and intracellular facing conformations to propel drug export, but how these structural changes occur is unclear. Here we combine site-specific cross-linking and functional studies to probe the movement of transmembrane helices in NorM from Neiserria gonorrheae (NorM-NG), a MATE transporter with known extracellular facing structure. We generated an active, cysteine-less NorM-NG and conducted pairwise cysteine mutagenesis on this variant. We found that copper phenanthroline catalyzed disulfide bond formation within five cysteine pairs and increased the electrophoretic mobility of the corresponding mutants. Furthermore, copper phenanthroline abolished the activity of the five paired cysteine mutants, suggesting that these substituted amino acids come in spatial proximity during transport, and the proximity changes are functionally indispensable. Our data also implied that the substrate-binding transmembrane helices move up to 10 Å in NorM-NG during transport and afforded distance restraints for modeling the intracellular facing transporter, thereby casting new light on the underlying mechanism.


Asunto(s)
Antiportadores/química , Proteínas Bacterianas/química , Disulfuros/química , Neisseria gonorrhoeae/química , Antiportadores/genética , Proteínas Bacterianas/genética , Transporte Biológico Activo , Neisseria gonorrhoeae/genética , Estructura Secundaria de Proteína
3.
Nat Commun ; 6: 7995, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26246409

RESUMEN

Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H(+) or Na(+) electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H(+)-coupled DinF transporter, as well as of an H(+)-coupled DinF and a Na(+)-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm the biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.


Asunto(s)
Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Verapamilo/farmacología , Sitios de Unión , Escherichia coli , Proteínas de Escherichia coli/antagonistas & inhibidores , Ligandos , Conformación Molecular , Proteínas de Transporte de Catión Orgánico/efectos de los fármacos , Proteínas de Transporte de Catión Orgánico/genética
4.
Nat Struct Mol Biol ; 20(11): 1310-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24141706

RESUMEN

Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance by coupling the efflux of drugs to the influx of Na(+) or H(+). Known structures of Na(+)-coupled, extracellular-facing MATE transporters from the NorM subfamily revealed 12 membrane-spanning segments related by a quasi-two-fold rotational symmetry and a multidrug-binding cavity situated near the membrane surface. Here we report the crystal structure of an H(+)-coupled MATE transporter from Bacillus halodurans and the DinF subfamily at 3.2-Å resolution, unveiling a surprisingly asymmetric arrangement of 12 transmembrane helices. We also identified a membrane-embedded substrate-binding chamber by combining crystallographic and biochemical analyses. Our studies further suggested a direct competition between H(+) and substrate during DinF-mediated transport and implied how a MATE transporter alternates between its extracellular- and intracellular-facing conformations to propel multidrug extrusion. Collectively, our results demonstrated heretofore-unrecognized mechanistic diversity among MATE transporters.


Asunto(s)
Antibacterianos/metabolismo , Bacillus/química , Bacillus/enzimología , Hidrógeno/metabolismo , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/metabolismo , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 110(6): 2099-104, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341609

RESUMEN

Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antiportadores/genética , Proteínas Bacterianas/genética , Sitios de Unión , Cesio/metabolismo , Cristalografía por Rayos X , Farmacorresistencia Bacteriana Múltiple/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Electricidad Estática
6.
Chem Commun (Camb) ; 47(11): 3102-4, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21258744

RESUMEN

A novel ATPase/nanoporous membrane system was prepared. In this system, the activity of F(0)F(1)-ATPase was preserved. The two sides of F(0)F(1)-ATPase were successfully separated macroscopically, and the chemical environments of the two sides could be manipulated in situ individually and freely. Furthermore, this system was also provided with mobility and reusage.


Asunto(s)
ATPasas de Translocación de Protón/química , Concentración de Iones de Hidrógeno , Nanotecnología , Tereftalatos Polietilenos/química , Porosidad , ATPasas de Translocación de Protón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...