Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999935

RESUMEN

Lithium-ion batteries, as an excellent energy storage solution, require continuous innovation in component design to enhance safety and performance. In this review, we delve into the field of eco-friendly lithium-ion battery separators, focusing on the potential of cellulose-based materials as sustainable alternatives to traditional polyolefin separators. Our analysis shows that cellulose materials, with their inherent degradability and renewability, can provide exceptional thermal stability, electrolyte absorption capability, and economic feasibility. We systematically classify and analyze the latest advancements in cellulose-based battery separators, highlighting the critical role of their superior hydrophilicity and mechanical strength in improving ion transport efficiency and reducing internal short circuits. The novelty of this review lies in the comprehensive evaluation of synthesis methods and cost-effectiveness of cellulose-based separators, addressing significant knowledge gaps in the existing literature. We explore production processes and their scalability in detail, and propose innovative modification strategies such as chemical functionalization and nanocomposite integration to significantly enhance separator performance metrics. Our forward-looking discussion predicts the development trajectory of cellulose-based separators, identifying key areas for future research to overcome current challenges and accelerate the commercialization of these green technologies. Looking ahead, cellulose-based separators not only have the potential to meet but also to exceed the benchmarks set by traditional materials, providing compelling solutions for the next generation of lithium-ion batteries.


Asunto(s)
Celulosa , Suministros de Energía Eléctrica , Litio , Celulosa/química , Litio/química , Tecnología Química Verde/métodos
2.
Inorg Chem ; 63(28): 13110-13116, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940642

RESUMEN

Chemical equilibrium stands as a fundamental principle governing the dynamics of chemical systems. However, it may become intricate when it refers to nanomaterials because of their unique properties. Here, we invesitigated concave gold nanocubes (CGNs) subjected to an akaline Au3+/H2O2 solution, which exhibit both etching and growth in a monotonic solution. When CGNs were subjected to an increasingly alkaline Au3+/H2O2 solution, their dimensions increased from 107 to 199 nm and then decreased to 125 nm. Transmission electron microscopy (TEM) demonstrated that their morphology undergoes intricate alternations from concave to mutibranch and finally to concave again. Real-time ultraviolet-visible spectroscopy and time-dependent TEM also demonstrated reduction first and then oxidation in one solution. Among the nanomaterials, the obtained carpenterworm-like gold nanoparticles revealed the best catalytic performance in p-nitrophenol reduction by NaBH4, with a chemical rate that continues to increase until the reaction reaches completion. Growth leading to atomic dislocation, distortion, and exposure on nanoparticles and the redox of H2O2 plausibly account for the further etching due to the Ostwald ripening effect. Our study may spur more interest in the tuning of the properties, engineering, investigation, and design of new kinds of nanomaterials.

3.
J Adv Res ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38579985

RESUMEN

BACKGROUD: Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW: Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW: The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.

4.
Inorg Chem ; 62(36): 14659-14667, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37624582

RESUMEN

Hierarchically porous metal-organic frameworks (HP-MOFs) have attracted a lot of attention in recent years because their hierarchical pores have critical importance in strengthening their performance, including guest diffusion kinetics, catalytic activity, and selectivity, especially with reference to large molecules. However, the preparation method for simple, controllable, and stable HP-MOFs at a micro-/meso-/macroscopic scale is still lacking. Herein, we showed several forms of HKUST-1 (HKUST = Hong Kong University of Science and Technology) by simply changing the copper source and solvent type, including original micron HKUST-1 (O-HKUST-1), half-foam HKUST-1 (HF-HKUST-1), and fully foam HKUST-1 (F-HKUST-1). Compared to O-HKUST-1, HF-HKUST-1 and F-HKUST-1 possessed an apparent hierarchically porous structure due to the high fusion of HKUST-1 nanocrystals. Especially in F-HKUST-1, all of the HKUST-1 nanocrystals were tightly integrated into each other, which formed a holistic hollow foam structure. Hence, F-HKUST-1 exhibited the highest adsorption capacity toward large molecules, including proteases, phosphotungstic acid, and organic dyes. Meanwhile, F-HKUST-1 presented the highest photocatalytic degradation capability for rhodamine B. Furthermore, F-HKUST-1, loaded with phosphotungstic acid (F-HKUST-1@PTA), which was used as a catalyst, indicated a catalytic capacity comparable to that of a homogeneous catalyst (pure phosphotungstic acid).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA