Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645247

RESUMEN

Cerebral amyloid angiopathy is characterized by a weakening of the small and medium sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid ß, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and vary between cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. Over-expression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reduction in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38577727

RESUMEN

BACKGROUND: The cerebellum is a key structure involved in balance and motor control, and has become a new stimulation target in brain regulation technology. Interference theta-burst simulation (iTBS) is a novel simulation mode of repetitive transcranial magnetic simulation. However, the impact of cerebellar iTBS on balance function and gait in stroke patients is still unknown. AIM: The aim of this study was to determine whether cerebellar iTBS can improve function, particularly balance and gait, in patients with post-stroke hemiplegia. DESIGN: This study is a randomized, double-blind, sham controlled clinical trial. SETTING: The study was carried out at the Department of Rehabilitation Medicine in a general hospital. POPULATION: Patients with stroke with first unilateral lesions were enrolled in the study. METHODS: Thirty-six patients were randomly assigned to the cerebellar iTBS group or sham stimulation group. The cerebellar iTBS or pseudo stimulation site is the ipsilateral cerebellum on the paralyzed side, which is completed just before daily physical therapy. The study was conducted five times a week for two consecutive weeks. All patients were assessed before the intervention (T0) and at the end of 2 weeks of treatment (T1), respectively. The primary outcome was the Berg Balance Scale (BBS), while secondary outcome measures included the Fugl Meyer Lower Limb Assessment Scale (FMA-LE), timed up and go (TUG), Barthel Index (BI), and gait analysis. RESULTS: After 2 weeks of intervention, the BBS, FMA-LE, TUG, and BI score in both the iTBS group and the sham group were significantly improved compared to the baseline (all P<0.05). Also, there was a significant gait parameter improvement including the cadence, stride length, velocity, step length compared to the baseline (P<0.05) in the iTBS group, but only significant improvement in cadence was identified in the sham group (P<0.05). Intergroup comparison showed that the BBS (P<0.001), FMA-LE (P<0.001), and BI (P=0.002) in the iTBS group were significantly higher than those in the sham group, and the TUG in the iTBS was significantly lower than that in the sham group (P=0.002). In addition, there were significant differences in cadence (P=0.029), strip length (P=0.046), gain velocity (P=0.002), and step length of affected lower limb (P=0.024) between the iTBS group and the sham iTBS group. CONCLUSIONS: Physical therapy is able to improve the functional recovery in hemiplegic patients after stroke, but the cerebellar iTBS can facilitate and accelerate the recovery, particularly the balance function and gait. Cerebellar iTBS could be an efficient and facilitative treatment for patients with stroke. CLINICAL REHABILITATION IMPACT: Cerebellar iTBS provides a convenient and efficient treatment modality for functional recovery of patients with stroke, especially balance function and gait.

3.
Food Sci Nutr ; 12(3): 2145-2152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455186

RESUMEN

In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.

4.
Phys Med Biol ; 69(8)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417178

RESUMEN

Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Glioma , Linfocinas , Humanos , Ratas , Animales , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Terapia por Estimulación Eléctrica/métodos , Glioma/terapia , Glioblastoma/patología
5.
Medicine (Baltimore) ; 103(4): e36799, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277535

RESUMEN

Pyroptosis plays a key role in the death of cells including cardiomyocytes, and it is associated with a variety of cardiovascular diseases. However, the role of pyroptosis-related genes (PRGs) in hypertrophic cardiomyopathy (HCM) is not well characterized. This study aimed to identify key biomarkers and explore the molecular mechanisms underlying the functions of the PRGs in HCM. The differentially expressed genes were identified by GEO2R, and the differentially expressed pyroptosis-related genes (DEPRGs) of HCM were identified by combining with PRGs. Enrichment analysis was performed using the "clusterProfiler" package of the R software. Protein-protein interactions (PPI) network analysis was performed using the STRING database, and hub genes were screened using cytoHubba. TF-miRNA coregulatory networks and protein-chemical interactions were analyzed using NetworkAnalyst. RT-PCR/WB was used for expression validation of HCM diagnostic markers. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to measure and compare the expression of the identified genes in the cardiac hypertrophy model and the control group. A total of 20 DEPRGs were identified, which primarily showed enrichment for the positive regulation of cytokine production, regulation of response to biotic stimulus, tumor necrosis factor production, and other biological processes. These processes primarily involved pathways related to Renin-angiotensin system, Adipocytokine signaling pathway and NF-kappa B signaling pathway. Then, a PPI network was constructed, and 8 hub genes were identified. After verification analysis, the finally identified HCM-related diagnostic markers were upregulated gene protein tyrosine phosphatase non-receptor type 11 (PTPN11), downregulated genes interleukin-1 receptor-associated kinase 3 (IRAK3), and annexin A2 (ANXA2). Further GSEA analysis revealed these 3 biomarkers primarily related to cardiac muscle contraction, hypertrophic cardiomyopathy, fatty acid degradation and ECM - receptor interaction. Moreover, we also elucidated the interaction network of these biomarkers with the miRNA network and known compounds, respectively. RT-PCR/WB results indicated that PTPN11 expression was significantly increased, and IRAK3 and ANXA2 expressions were significantly decreased in HCM. This study identified PTPN11, IRAK3, and ANXA2 as pyroptosis-associated biomarkers of HCM, with the potential to reveal the development and pathogenesis of HCM and could be potential therapeutic targets.


Asunto(s)
Cardiomiopatía Hipertrófica , MicroARNs , Humanos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Piroptosis/genética , Biomarcadores , MicroARNs/genética , MicroARNs/metabolismo , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Biología Computacional/métodos
6.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5294-5303, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114119

RESUMEN

This paper aims to investigate the effects and mechanisms of adipose-derived stem cells-exosomes(ADSCs-exos) toge-ther with aucubin in protecting human-derived nucleus pulposus cells(NPCs) from inflammatory injury, senescence, and apoptosis. The tert-butyl hydroperoxide(TBHP)-induced NPCs were assigned into normal, model, aucubin, ADSCs-exos, and aucubin+ADSCs-exos groups. The cell viability was examined by cell counting kit-8(CCK-8), cell proliferation by EdU staining, cell senescence by senescence-associated-ß-galactosidase(SA-ß-Gal), and cell cycle and apoptosis by flow cytometry. Enzyme-linked immunosorbent assay was employed to examine the expression of interleukin-1ß(IL-1ß), IL-10, and tumor necrosis factor-α(TNF-α). Real-time fluorescence quantitative PCR and Western blot were employed to determine the mRNA and protein levels of aggregated proteoglycan(aggrecan), type Ⅱ collagen alpha 1(COL2A1), Toll-like receptor 4(TLR4), and nuclear factor-kappa B(NF-κB). The results showed that compared with the model group, the aucubin or ADSCs-exos group showed enhanced viability and proliferation of NPCs, decreased proportion of G_0/G_1 phase cells, increased proportion of S phase cells, reduced apoptosis and proportion of cells in senescence, lowered IL-1ß and TNF-α levels, elevated IL-10 level, down-regulated mRNA and protein levels of TLR4 and NF-κB, and up-regulated mRNA and protein levels of aggrecan and COL2A1. Compared with the aucubin or ADSCs-exos group, the aucubin+ADSCs-exos combination further increased the viability and proliferation of NPCs, decreased the proportion of G_0/G_1 phase cells, increased the proportion of S phase cells, reduced the apoptosis and proportion of cells in senescence, lowered the IL-1ß and TNF-α levels, elevated the IL-10 level, down-regulated the mRNA and protein levels of TLR4 and NF-κB, and up-regulated the mRNA and protein levels of aggrecan and COL2A1. In summary, both aucubin and ADSCs-exos could exert protective effects by inhibiting inflammatory responses, reducing apoptosis and senescence of NPCs, improving cell viability and proliferation as well as extracellular matrix synthesis, which may be associated with the inhibition of TLR4/NF-κB signaling pathway activation. The combination of both plays a synergistic role in the protective effects.


Asunto(s)
FN-kappa B , Núcleo Pulposo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Interleucina-10 , Núcleo Pulposo/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Agrecanos/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , ARN Mensajero/metabolismo
7.
Adv Healthc Mater ; 12(32): e2301261, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37822133

RESUMEN

Cancer vaccines combined with immune checkpoint blockades (ICB) represent great potential application, yet the insufficient tumor antigen presentation and immature dendritic cells hinder improved efficacy. Here, a hybrid nano vaccine composed by hyper branched poly(beta-amino ester), modified iron oxide nano adjuvant and messenger RNA (mRNA) encoded with model antigen ovalbumin (OVA) is presented. The nano vaccine outperforms three commercialized reagents loaded with the same mRNA, including Lipofectamine MessengerMax, jetPRIME, and in vivo-jetRNA in promoting dendritic cells' transfection, maturation, and peptide presentation. In an OVA-expressing murine model, intratumoral administration of the nano vaccine significantly induced macrophages and dendritic cells' presenting peptides and expressing co-stimulatory CD86. The nano vaccine also elicited strong antigen-specific splenocyte response and promoted CD8+ T cell infiltration. In combination with ICB, the nano vaccine aroused robust tumor suppression in murine models with large tumor burdens (initial volume >300 mm3 ). The hybrid mRNA vaccine represents a versatile and readily transformable platform and augments response to ICB.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Ratones , Animales , Presentación de Antígeno , Nanovacunas , Inhibidores de Puntos de Control Inmunológico/farmacología , ARN Mensajero , Células Dendríticas , Péptidos/farmacología , Ovalbúmina , Antígenos/farmacología , Ratones Endogámicos C57BL
8.
Artículo en Inglés | MEDLINE | ID: mdl-37861047

RESUMEN

BACKGROUND: Huangqi-Shanzhuyu (HS), a classic combination of Chinese herbal formulae, has been widely used for the treatment of diabetic nephropathy (DN). However, its pharmacological mechanism of action is still unclear. METHODS: The active ingredients of HS and their potential targets were identified through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the DN-related targets were determined from GeneCards, Online Mendelian Inheritance in Man (OMIM), PharmGkb, and Therapeutic Target Database (TTD). The Cytoscape software was used to construct a herb-disease-target network and screen core genes. STRING was employed to generate a protein-protein interaction (PPI) network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the mechanism of action of HS in DN. Animal experiments and molecular docking were used to verify the potential mechanism. RESULTS: In total, 40 active ingredients and 180 effective targets of HS in DN were identified and 1115 DN-related targets were retrieved. From the PPI network, VEGFA, AKT1, IL6, IL1B, TP53, MMP9, PTGS2, CASP3, EGF and EGFR were identified as core genes. The anti-DN mechanism mainly involved multiple signaling pathways such as AGEs-RAGE. Animal experiments and molecular docking analysis confirmed that HS downregulated the expression of IL-1 and IL-6 via kaempferol-mediated inhibition of JNK1 phosphorylation. CONCLUSIONS: HS exhibits a therapeutic effect in DN through its multiple ingredients that act on several targets and multiple signaling pathways, including AGEs-RAGE.

9.
Sci Rep ; 13(1): 16660, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794048

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is an important vector for the transmission of arboviruses such as dengue virus (DENV). Adenosine deaminase (ADA) is a well-characterized metabolic enzyme involved in facilitating blood feeding and (or) arbovirus transmission in some hematophagous insect species. We previously reported the immunologic function of ADA by investigating its effect on mast cell activation and the interaction with mast cell tryptase and chymase. The 2-D gel electrophoresis and mass spectrometry analysis in the current study revealed that ADA is present and upregulated following mosquito blood feeding, as confirmed by qRT-PCR and western blot. In addition, the recombinant ADA efficiently converted adenosine to inosine. Challenging the Raw264.7 and THP-1 cells with recombinant ADA resulted in the upregulation of IL-1ß, IL-6, TNF-α, CCL2, IFN-ß, and ISG15. The current study further identified recombinant ADA as a positive regulator in NF-κB signaling targeting TAK1. It was also found that recombinant Ae. albopictus ADA facilitates the replication of DENV-2. Compared with cells infected by DENV-2 alone, the co-incubation of recombinant ADA with DENV-2 substantially increased IL-1ß, IL-6, TNF-α, and CCL2 gene transcripts in Raw264.7 and THP-1 cells. However, the expression of IFN-ß and ISG15 were markedly downregulated in Raw264.7 cells but upregulated in THP-1 cells. These findings suggest that the immunomodulatory protein, Ae. albopictus ADA is involved in mosquito blood feeding and may modulate DENV transmission via macrophage or monocyte-driven immune response.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Virus del Dengue/fisiología , Mosquitos Vectores , Factor de Necrosis Tumoral alfa , Adenosina Desaminasa , Interleucina-6 , Replicación Viral , Inmunidad
10.
Phys Med Biol ; 68(20)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37703902

RESUMEN

Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.


Asunto(s)
Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Ratas , Animales , Glioblastoma/patología , Electricidad , Conductividad Eléctrica , Terapia por Estimulación Eléctrica/métodos
11.
Small Methods ; 7(11): e2300848, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681531

RESUMEN

Near-infrared (NIR) photothermal manipulation has emerged as a promising and noninvasive technology for neuroscience research and disease therapy for its deep tissue penetration. NIR stimulated techniques have been used to modulate neural activity. However, due to the lack of suitable in vivo control systems, most studies are limited to the cellular level. Here, a NIR photothermal technique is developed to modulate cellular excitability and animal behaviors in Caenorhabditis elegans in vivo via the thermosensitive transient receptor potential vanilloid 1 (TRPV1) channel with an FDA-approved photothermal agent indocyanine green (ICG). Upon NIR stimuli, exogenous expression of TRPV1 in AFD sensory neurons causes Ca2+ influx, leading to increased neural excitability and reversal behaviors, in the presence of ICG. The GABAergic D-class motor neurons can also be activated by NIR irradiation, resulting in slower thrashing behaviors. Moreover, the photothermal manipulation is successfully applied in different types of muscle cells (striated muscles and nonstriated muscles), enhancing muscular excitability, causing muscle contractions and behavior changes in vivo. Altogether, this study demonstrates a noninvasive method to precisely regulate the excitability of different types of cells and related behaviors in vivo by NIR photothermal manipulation, which may be applied in mammals and clinical therapy.


Asunto(s)
Antineoplásicos , Caenorhabditis elegans , Animales , Verde de Indocianina , Línea Celular Tumoral , Conducta Animal , Mamíferos
12.
Genomics ; 115(4): 110641, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201873

RESUMEN

BACKGROUND: Gastric cancer (GC) is a common cancer with a high incidence and mortality rate. Herein, the role of hsa_circ_0002019 (circ_0002019) in GC was investigated. METHODS: The molecular structure and stability of circ_0002019 were identified by RNase R, and Actinomycin D treatment. Molecular associations were verified by RIP. Proliferation, migration, and invasion were detected by CCK-8, EdU, and Transwell, respectively. The effect of circ_0002019 on tumor growth was analyzed in vivo. RESULTS: Circ_0002019 was elevated in GC tissues and cells. Circ_0002019 knockdown inhibited the proliferation, migration, and invasion. Mechanically, circ_0002019 activated NF-κB signaling by increasing TNFAIP6 mRNA stability by PTBP1. Activation of NF-κB signaling limited the antitumor effect of circ_0002019 silencing in GC. Circ_0002019 knockdown inhibited tumor growth in vivo by reducing TNFAIP6 expression. CONCLUSIONS: Circ_0002019 accelerated the proliferation, migration, and invasion by regulating TNFAIP6/NF-κB pathway, suggesting circ_0002019 could be a key regulatory factor in GC progression.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , MicroARNs/metabolismo , Neoplasias Gástricas/patología , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Moléculas de Adhesión Celular/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
13.
Virus Res ; 328: 199086, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36894068

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by SARS-CoV-2 infection. Patients with severe COVID-19 exhibit robust induction of proinflammatory cytokines, which are closely associated with the development of acute respiratory distress syndrome. However, the underlying mechanisms of the NF-κB activation mediated by SARS-CoV-2 infection remain poorly understood. Here, we screened SARS-CoV-2 genes and found that ORF3a induces proinflammatory cytokines by activating the NF-κB pathway. Moreover, we found that ORF3a interacts with IKKß and NEMO and enhances the interaction of IKKß-NEMO, thereby positively regulating NF-κB activity. Together, these results suggest ORF3a may play pivotal roles in the pathogenesis of SARS-CoV-2 and provide novel insights into the interaction between host immune responses and SARS-CoV-2 infection.


Asunto(s)
COVID-19 , FN-kappa B , SARS-CoV-2 , Proteínas Viroporinas , Humanos , COVID-19/metabolismo , Citocinas , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas , SARS-CoV-2/metabolismo , Proteínas Viroporinas/metabolismo
14.
Front Med (Lausanne) ; 10: 1097999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895725

RESUMEN

Scabies is a common skin disorder, caused by the ectoparasite Sarcoptes scabiei. The scabies mites burrow is highly diagnostic but illegible by the naked eye, because it is tiny and may completely be obscured by scratch and crust. The classic technique is opening the end of an intact mite burrow with a sharp instrument and inspecting its contents in the light microscope under loupe vision. Dermatoscope is a new method to diagnose scabies, with the advantages of non-invasive and more sensitive. This study verified the characteristic manifestations of scabies under dermoscopy. Under the closer examination of the curvilinear scaly burrow, the scabies mite itself may be seen as a dark equilateral triangular structure, which is often referred to as a "jet with contrail." Besides, this study found that the positive detection rate of microscopic characteristic manifestations under the dermoscopy ordered by the external genitals, the finger seams and the trunk, which were statistically different (P-value < 0.05). Of note, this is the first study to explore the regional distribution of the characteristic dermoscopic manifestations of scabies. We are the first to propose to focus on examining the external genitalia and finger seams with dermoscopy.

15.
Front Cardiovasc Med ; 10: 1091183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776255

RESUMEN

Hereditary transthyretin cardiac amyloidosis (hATTR-CA) is a rare autosomal dominantly inherited disease caused by mutations in the transthyretin (TTR) gene. TTR mutations often cause the instability of transthyretin, production of misfolded proteins, and ultimately excessive deposition of insoluble amyloid fibrils in the myocardium, thereby leading to cardiac dysfunction. Herein, we report a novel transthyretin D39Y mutation in a Chinese family. We characterized the kinetic and thermodynamic stabilities of D39Y mutant TTR, revealing that TTR D39Y mutant was less stable than WT TTR and more stable than amyloidogenic mutation TTR L55P. Meanwhile, the only FDA approved drug Tafamidis showed satisfactory inhibitory effect toward ATTR amyloid formation and strong binding affinity in test tube revealed by isothermal titration calorimetry. Finally, we measured the well-folded tetrameric TTR concentration in patient's and his descents' blood serum using a previously reported UPLC-based assay. Notably, the tetramer concentrations gradually increased from symptomatic D39Y gene carrier father, to asymptomatic D39Y gene carrier daughter, and further to wild type daughter, suggesting the decrease in functional tetrameric TTR concentration may serve as an indicator for disease age of onset in D39Y gene carriers. The study described a Chinese family with hATTR-CA due to the TTR variant D39Y with its destabilizing effect in both kinetic and thermodynamic stabilities.

16.
J Microbiol Biotechnol ; 33(5): 600-606, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-36788451

RESUMEN

Dengue virus (DENV) is a widespread arbovirus. To efficiently establish infection, DENV evolves multiple strategies to hijack the host innate immune response. Herein, we examined the inhibitory effects of DENV serotype 2 (DENV2) nonstructural proteins on RIG-I-directed antiviral immune response. We found that DENV2 NS2A, NS2B, NS4A, and NS4B significantly inhibited RIG-I-mediated IFN-ß promoter activation. The roles of NS2B in RIG-I-directed antiviral immune response are unknown. Our study further showed that NS2B could dose-dependently suppress RIG-I/MAVS-induced activation of IFN-ß promoter. Consistently, NS2B significantly decreased RIG-I- and MAVS-induced transcription of IFNB1, ISG15, and ISG56. Mechanistically, NS2B was found to interact with MAVS and IKKε to impair RIG-I-directed antiviral response. Our findings demonstrated a previously uncharacterized function of NS2B in RIG-I-mediated antiviral response, making it a promising drug target for anti-DENV treatments.


Asunto(s)
Virus del Dengue , Quinasa I-kappa B , Antivirales/farmacología , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Virus del Dengue/metabolismo , Quinasa I-kappa B/genética , Inmunidad Innata , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos
17.
Neuroreport ; 34(3): 156-164, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719839

RESUMEN

Previous studies have shown that micro-RNA (miR)-186-5p can affect apoptosis of cells by regulating insulin-like growth factor-I (IGF-1). However, the role of miR-186-5p-IGF1 axis in traumatic brain injury (TBI), especially oxidative stress and neuroinflammatory response, remains to be further studied. Lipopolysaccharide (5 µg/mL) was used to activate microglia in vitro . The expression of miR-186-5p, IGF-1 was detected by quantitative reverse transcription PCR (qRT-PCR). ELISA and western blot were used to detect the inflammatory factors and oxidative stress. Western blot was used to detect apoptotic proteins (Bax, Bcl2 and C-caspase3), inflammatory proteins (iNOS and COX2), oxidative stress proteins (Nrf2 and HO-1) and NLRP3/apoptosis-associated speck-like protein containing a CARD (ASC)/caspase-1 inflammatory bodies. MiR-186-5p inhibitor could reduce the inflammatory factors and oxidative stress in BV2 treated with lipopolysaccharide, and reduce apoptosis. In addition, we also found that inhibition of miR-186-5p increased the expression of IGF-1, which is necessary for nervous system development. Luciferase activity assay confirmed that IGF-1 was the direct target gene of miR-186-5p. Inhibiting miR-186-5p, through upregulation IGF-1, attenuates the inflammatory factors, oxidative stress and by inhibiting NLRP3/ASC/caspase-1 signal pathway TBI in-vitro model.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , Apoptosis , Lesiones Traumáticas del Encéfalo/genética , Caspasa 1 , Inflamación , Factor I del Crecimiento Similar a la Insulina , Lipopolisacáridos/farmacología , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales
18.
Bioelectrochemistry ; 149: 108287, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36306728

RESUMEN

Exposing cancer cells to alternating electric fields of 100-300 kHz frequency and 1-4 V/cm strength has been shown to significantly reduce cancer growth in cell culture and in human patients. This form of anti-cancer therapy is more commonly referred to as tumor treating fields (TTFields), a novel treatment modality that has been approved by the U.S. Food and Drug Administration for use in patients with glioblastoma and malignant pleural mesothelioma. Pivotal trials in other solid organ cancer trials are underway. In regards to overall survival, TTFields alone is comparable to chemotherapy alone in recurrent glioblastoma. However, when combined with adjuvant chemotherapy, TTFields prolong median survival by 4.9 months in newly-diagnosed glioblastoma. TTFields hold promise as a therapeutic approach to numerous solid organ cancers. This review summarizes the current status of TTFields research at the preclinical level, highlighting recent aspects of a relatively complex working hypothesis. In addition, we point out the gaps between limited preclinical in vivo studies and the available clinical data. To date, no customized system for TTFields delivery in rodent models of glioblastoma has been presented. We aim to motivate the expansion of TTFields preclinical research and facilitate the availability of suitable hardware, to ultimately improve outcomes in patients with cancer.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Glioblastoma/terapia , Terapia Combinada , Electricidad
19.
Amyloid ; 30(2): 188-198, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36350689

RESUMEN

OBJECTIVES: We presented an unreported T96R mutation induced transthyretin cardiac amyloidosis (ATTR). The biochemical and biophysical properties were explored to support its pathogenicity. BACKGROUND: Understanding the biochemical and biophysical nature of genetically mutated transthyretin (TTR) proteins is key to provide precise medical cares for ATTR patients. RESULTS: Genetic testing showed heterozygosity for the T96R pathogenic variant c.347C > G (ATTR p.T116R) after myocardial biopsy confirmed amyloid deposition. Biochemical characterizations revealed slight perturbation of its thermodynamic stability (Cm=3.7 M for T96R, 3.4 M for WT and 2.3 M for L55P (commonly studied TTR mutant)) and kinetic stability (t1/2=39.8 h for T96R, 42 h for WT and 4.4 h in L55P). Crosslinking experiment demonstrated heterozygous subunit exchange between wild-type and TTR T96R protein destabilized the tetramer. Inhibitory effect of tafamidis and diflunisal on TTR T96R fibril formation was slightly less effective compared to WT and L55P. CONCLUSIONS: A novel T96R mutation was identified for TTR protein. Biochemical and biophysical analyses revealed slightly destabilized kinetic stability. T96R mutation destabilized heterozygous protein but not proteolytic degradation, explaining its pathogenicity. Inhibitory effect of small molecule drugs on T96R mutation was different, suggesting personalized treatment may be required.


Asunto(s)
Neuropatías Amiloides Familiares , Amiloidosis , Humanos , Prealbúmina/metabolismo , Mutación/genética , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/tratamiento farmacológico
20.
Curr Mol Med ; 23(7): 688-697, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35975860

RESUMEN

BACKGROUND: Psoralidin (PL) could affect the differentiation of bone marrow mesenchymal stem cells (BMSCs). The role of PL is still unclear in adipose-derived stem cells (ADSCs). AIMS: This study aimed to investigate the effects of PL on ADSCs differentiation into nucleus pulposus-like cells and the TGF-ß/Smad signaling pathway. METHODS: The proliferation and apoptosis of ADSCs were detected. The nucleus pulposus cell-related markers (CD24, BASP1, KRT19, and Aggrecan) and TGF-ß/Smad signaling pathway indexes were analyzed. RESULTS: The results showed that compared to the control group, the cell activity was increased in the PL group, and the apoptosis rate was decreased. The mRNA and protein levels of nucleus pulposus cells markers (CD24, BASP1, KRT19, Aggrecan, and Collagen Type II) and TGF-ß/Smad signaling pathway-related indexes (TGF-ß, SMAD2, and SMAD3) were increased in PL group. After treatment with PL and TGF-ß silencing, the TGF-ß/Smad signaling pathway-related indicators (TGF-ß, SMAD2, and SMAD3) and nucleus pulposus cells markers (CD24, BASP1, KRT19, Aggrecan, and Collagen Type II) were found to be higher in the sh-TGF-ß +PL group than in the sh-TGF-ß group. CONCLUSION: In conclusion, our study showed that PL might induce the differentiation of ADSCs to nucleus pulposus cells through the TGF-ß/Smad signaling pathway. It might have the potential application value in the treatment of intervertebral disc degeneration.


Asunto(s)
Células Madre Mesenquimatosas , Núcleo Pulposo , Núcleo Pulposo/metabolismo , Agrecanos/genética , Agrecanos/metabolismo , Agrecanos/farmacología , Colágeno Tipo II/metabolismo , Colágeno Tipo II/farmacología , Diferenciación Celular , Factor de Crecimiento Transformador beta/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...