Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273949

RESUMEN

Planting geometry is one of the most important management practices that determine plant growth and yield of corn. The effects of eight planting geometries (35 × 23 cm, 40 × 21 cm, 45 × 19 cm, 50 × 18 cm, 55 × 17 cm, 60 × 16 cm, 65 × 15 cm, 70 × 15 cm) on plant growth and yields of three sweet corn hybrids (Argos F1, Challenger F1, Khan F1) were investigated under Erzurum, Türkiye conditions in 2022 and 2023 years. Variance analysis of the main factors shows a highly significant effect on whole traits but in two-way interactions some of the traits were significant and in the three-way interactions, it was insignificant. As an average of years, the number of plants per hectare at the harvest varied between 92,307 (35 × 23 cm) and 120,444 (70 × 15 cm) according to the planting geometries. The highest marketable ear number per hectare (107,456), marketable ear yield (24,887 kg ha-1), and fresh kernel yield (19,493 kg ha-1) were obtained from the 40 × 21 cm planting geometry. The results showed that the variety Khan F1 grown at 40 × 21 cm planting geometry obtained the highest marketable ear number (112,472), marketable ear yield (29,788 kg ha-1), and fresh kernel yield (22,432 kg ha-1). The plant density was positively correlated with marketable ear number (r = 0.904 **), marketable ear yield (r = 0.853 **), and fresh kernel yield (r = 0.801 **). The differences among the varieties were significant for the studied traits, except for plant density and kernel number per ear. In conclusion, the variety Khan F1 should be grown at the 40 × 21 cm planting geometry to maximize yields under study area conditions without water and nutrient limitations.

2.
Front Chem ; 12: 1393791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161956

RESUMEN

Uncontrolled or improperly managed wastewater is considered toxic and dangerous to plants, animals, and people, as well as negatively impacting the ecosystem. In this research, the use of we aimed to prepare polymer nanocomposites (guar gum/polyvinyl alcohol, and nano-montmorillonite clay) for eliminating heavy metals from water-based systems, especially Cu2+ and Cd2+ ions. The synthesis of nanocomposites was done by the green method with different ratios of guar gum to PVA (50/50), (60/40), and (80/20) wt%, in addition to glycerol that acts as a cross-linker. Fourier-transform infrared spectroscopy (FT-IR) analysis of the prepared (guar gum/PVA/MMT) polymeric nano-composites' structure and morphology revealed the presence of both guar gum and PVA's functional groups in the polymeric network matrix. Transmission electron microscopy (TEM) analysis was also performed, which verified the creation of a nanocomposite. Furthermore, theromgravimetric analysis (TGA) demonstrated the biocomposites' excellent thermal properties. For those metal ions, the extreme uptake was found at pH 6.0 in each instance. The Equilibrium uptake capacities of the three prepared nanocomposites were achieved within 240 min. The maximal capacities were found to be 95, 89 and 84 mg/g for Cu2+, and for Cd2+ were found to be 100, 91, 87 mg/g for guar gum (80/20, 60/40 and 50/50), respectively. The pseudo-2nd-order model with R2 > 0.98 was demonstrated to be followed by the adsorption reaction, according to the presented results. In less than 4 hours, the adsorption equilibrium was reached. Furthermore, a 1% EDTA solution could be used to revitalize the metal-ion-loaded nanocomposites for several cycles. The most promising nanocomposite with efficiency above 90% for the removal of Cu2+ and Cd2+ ions from wastewater was found to have a guar (80/20) weight percentage, according to the results obtained.

3.
Plants (Basel) ; 12(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140479

RESUMEN

The objective of this study was to comprehend the efficiency of wheat regeneration, callus induction, and DNA methylation through the application of mathematical frameworks and artificial intelligence (AI)-based models. This research aimed to explore the impact of treatments with AgNO3 and Ag-NPs on various parameters. The study specifically concentrated on analyzing RAPD profiles and modeling regeneration parameters. The treatments and molecular findings served as input variables in the modeling process. It included the use of AgNO3 and Ag-NPs at different concentrations (0, 2, 4, 6, and 8 mg L-1). The in vitro and epigenetic characteristics were analyzed using several machine learning (ML) methods, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor classifier (KNN), and Gaussian processes classifier (GP) methods. This study's results revealed that the highest values for callus induction (CI%) and embryogenic callus induction (EC%) occurred at a concentration of 2 mg L-1 of Ag-NPs. Additionally, the regeneration efficiency (RE) parameter reached its peak at a concentration of 8 mg L-1 of AgNO3. Taking an epigenetic approach, AgNO3 at a concentration of 2 mg L-1 demonstrated the highest levels of genomic template stability (GTS), at 79.3%. There was a positive correlation seen between increased levels of AgNO3 and DNA hypermethylation. Conversely, elevated levels of Ag-NPs were associated with DNA hypomethylation. The models were used to estimate the relationships between the input elements, including treatments, concentration, GTS rates, and Msp I and Hpa II polymorphism, and the in vitro output parameters. The findings suggested that the XGBoost model exhibited superior performance scores for callus induction (CI), as evidenced by an R2 score of 51.5%, which explained the variances. Additionally, the RF model explained 71.9% of the total variance and showed superior efficacy in terms of EC%. Furthermore, the GP model, which provided the most robust statistics for RE, yielded an R2 value of 52.5%, signifying its ability to account for a substantial portion of the total variance present in the data. This study exemplifies the application of various machine learning models in the cultivation of mature wheat embryos under the influence of treatments and concentrations involving AgNO3 and Ag-NPs.

4.
Plants (Basel) ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765424

RESUMEN

Numerous factors can impact the efficiency of callus formation and in vitro regeneration in wheat cultures through the introduction of exogenous polyamines (PAs). The present study aimed to investigate in vitro plant regeneration and DNA methylation patterns utilizing the inter-primer binding site (iPBS) retrotransposon and coupled restriction enzyme digestion-iPBS (CRED-iPBS) methods in wheat. This investigation involved the application of distinct types of PAs (Put: putrescine, Spd: spermidine, and Spm: spermine) at varying concentrations (0, 0.5, 1, and 1.5 mM). The subsequent outcomes were subjected to predictive modeling using diverse machine learning (ML) algorithms. Based on the specific polyamine type and concentration utilized, the results indicated that 1 mM Put and Spd were the most favorable PAs for supporting endosperm-associated mature embryos. Employing an epigenetic approach, Put at concentrations of 0.5 and 1.5 mM exhibited the highest levels of genomic template stability (GTS) (73.9%). Elevated Spd levels correlated with DNA hypermethylation while reduced Spm levels were linked to DNA hypomethylation. The in vitro and epigenetic characteristics were predicted using ML techniques such as the support vector machine (SVM), extreme gradient boosting (XGBoost), and random forest (RF) models. These models were employed to establish relationships between input variables (PAs, concentration, GTS rates, Msp I polymorphism, and Hpa II polymorphism) and output parameters (in vitro measurements). This comparative analysis aimed to evaluate the performance of the models and interpret the generated data. The outcomes demonstrated that the XGBoost method exhibited the highest performance scores for callus induction (CI%), regeneration efficiency (RE), and the number of plantlets (NP), with R2 scores explaining 38.3%, 73.8%, and 85.3% of the variances, respectively. Additionally, the RF algorithm explained 41.5% of the total variance and showcased superior efficacy in terms of embryogenic callus induction (ECI%). Furthermore, the SVM model, which provided the most robust statistics for responding embryogenic calluses (RECs%), yielded an R2 value of 84.1%, signifying its ability to account for a substantial portion of the total variance present in the data. In summary, this study exemplifies the application of diverse ML models to the cultivation of mature wheat embryos in the presence of various exogenous PAs and concentrations. Additionally, it explores the impact of polymorphic variations in the CRED-iPBS profile and DNA methylation on epigenetic changes, thereby contributing to a comprehensive understanding of these regulatory mechanisms.

5.
Front Plant Sci ; 14: 1159394, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396629

RESUMEN

Hydroxysteroid dehydrogenase (HSDs) is an oil-body sterol protein (steroleosin) with an NADP(H) binding domain that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. There are numerous studies on the characterization of HSDs in plants. However, thus far, the evolutionary differentiation and divergence analysis of these genes remain to be explored. The current study used an integrated method to elucidate the sequential evolution of HSDs in 64 sequenced plant genomes. Analyses were conducted on their origins, distribution, duplication, evolutionary paths, domain functions, motif composition, properties, and cis-elements. Results indicate that except for algae, HSD1 was widely distributed in plant species ranging from lower to higher plants, while HSD5 was restricted to terrestrial plants, and HSD2 was identified in fewer monocots and several dicot plants. Phylogenetic analysis of HSD proteins revealed that monocotyledonous HSD1 in moss and ferns appeared closest to the outgroup, V. carteri HSD-like, M. musculus HSD1, and H. sapiens HSD1. These data support the hypothesis that HSD1 originated in bryophytes and then in non-vascular and vascular plants, followed by HSD5 only in land plants. Gene structure analysis suggests that HSDs in plant species came up with a fixed number of six exons, and the intron phase was primarily 0, 1, 0, 0, and 0. Similarly, duplication analysis revealed that segmental duplications were the main reason for HSDs in plant species. Physicochemical properties suggest that dicotyledonous HSD1s and HSD5s were mainly acidic. The monocotyledonous HSD1s and HSD2s and the dicotyledonous HSD2s, HSD3s, HSD4s, and HSD6s were mainly basic, implying that HSDs in plants may have a variety of functions. Cis-regulatory elements and expression analysis revealed that HSDs in plants might have roles in several abiotic stresses. Due to the high expression of HSD1s and HSD5s in seeds, these HSDs in plants may have roles in fatty acid accumulation and degradation.

7.
Plants (Basel) ; 12(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111864

RESUMEN

Low temperature (cold) and freezing stress is a major problem during winter wheat growth. Low temperature tolerance (LT) is an important agronomic trait in winter wheat and determines the plants' ability to cope with below-freezing temperatures; thus, the development of cold-tolerant cultivars has become a major goal of breeding in various regions of the world. In this study, we sought to identify quantitative trait loci (QTL) using molecular markers related to freezing tolerance in winter. Thirty-four polymorphic markers among 425 SSR markers were obtained for the population, including 180 inbred lines of F12 generation wheat, derived from crosses (Norstar × Zagros) after testing with parents. LT50 is used as an effective selection criterion for identifying frost-tolerance genotypes. The progeny of individual F12 plants were used to evaluate LT50. Several QTLs related to wheat yield, including heading time period, 1000-seed weight, and number of surviving plants after overwintering, were identified. Single-marker analysis illustrated that four SSR markers with a total of 25% phenotypic variance determination were linked to LT50. Related QTLs were located on chromosomes 4A, 2B, and 3B. Common QTLs identified in two cropping seasons based on agronomical traits were two QTLs for heading time period, one QTL for 1000-seed weight, and six QTLs for number of surviving plants after overwintering. The four markers identified linked to LT50 significantly affected both LT50 and yield-related traits simultaneously. This is the first report to identify a major-effect QTL related to frost tolerance on chromosome 4A by the marker XGWM160. It is possible that some QTLs are closely related to pleiotropic effects that control two or more traits simultaneously, and this feature can be used as a factor to select frost-resistant lines in plant breeding programs.

8.
Plants (Basel) ; 12(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36771683

RESUMEN

The study presents the results of a 3-year field trial aimed at assessing the yield and efficiency indicators of nitrogen application in the cultivation of three maize cultivars differing in agronomic and genetic profile. The advantages of the UltraGrain stabilo formulation (NBPT and NPPT) over ammonium nitrate and urea are apparent if a maize cultivar capable of efficient nutrient uptake in the pre-flowering period and effective utilization during the grain filling stage is selected. Therefore, the rational fertilization of maize with urea-based nitrogen fertilizer with a urease inhibitor requires the simultaneous selection of cultivars that are physiologically profiled for efficient nitrogen utilization from this form of fertilizer ("stay-green" cultivar). The interaction of a selective cultivar with a high genetically targeted potential for nitrogen uptake from soil, combined with a targeted selection of nitrogen fertilizer, is important not only in terms of production, but also environmental and economic purposes.

9.
Plants (Basel) ; 12(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36678944

RESUMEN

Starch content is one of the major quality criteria targeted by potato breeding programs. Traditional potato breeding is a laborious duty due to the tetraploid nature and immense heterozygosity of potato genomes. In addition, screening for functional genetic variations in wild relatives is slow and strenuous. Moreover, genetic diversity, which is the raw material for breeding programs, is limited due to vegetative propagation used in the potato industry. Somaclonal variation provides a time-efficient tool to breeders for obtaining genetic variability, which is essential for breeding programs, at a reasonable cost and independent of sophisticated technology. The present investigation aimed to create potato somaclones with an improved potential for starch accumulation. Based on the weight and starch content of tubers, the somaclonal variant Ros 119, among 105 callus-sourced clones, recorded a higher tuberization potential than the parent cv Lady Rosetta in a field experiment. Although this somaclone was similar to the parent in the number of tubers produced, it exhibited tubers with 42 and 61% higher fresh and dry weights, respectively. Additionally, this clone recorded 10 and 75% increases in starch content based on the dry weight and average content per plant, respectively. The enhanced starch accumulation was associated with the upregulation of six starch-synthesis-related genes, namely, the AGPase, GBSS I, SBE I, SBE II, SS II and SS III genes. AGPase affords the glycosyl moieties required for the synthesis of amylose and amylopectin. GBSS is required for amylose elongation, while SBE I, SBE II, SS II and SS III are responsible for amylopectin.

10.
Plants (Basel) ; 11(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35890453

RESUMEN

Global climate change is a significant challenge that will significantly lower crop yield and staple grain quality. The present investigation was conducted to assess the effects of the foliar application of either Si (1.5 mM) or Si nanoparticles (1.66 mM) on the yield and grain quality attributes of two wheat genotypes (Triticum aestivum L.), cv. Shandweel 1 and cv. Gemmeiza 9, planted at normal sowing date and late sowing date (heat stress). Si and Si nanoparticles markedly mitigated the observed decline in yield and reduced the heat stress intensity index value at late sowing dates, and improved yield quality via the decreased level of protein, particularly glutenin, as well as the lowered activity of α-amylase in wheat grains, which is considered a step in improving grain quality. Moreover, Si and nanoSi significantly increased the oil absorption capacity (OAC) of the flour of stressed wheat grains. In addition, both silicon and nanosilicon provoked an increase in cellulose, pectin, total phenols, flavonoid, oxalic acid, total antioxidant power, starch and soluble protein contents, as well as Ca and K levels, in heat-stressed wheat straw, concomitant with a decrease in lignin and phytic acid contents. In conclusion, the pronounced positive effects associated with improving yield quantity and quality were observed in stressed Si-treated wheat compared with Si nanoparticle-treated ones, particularly in cv. Gemmeiza 9.

11.
Front Plant Sci ; 12: 663750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733294

RESUMEN

Despite the role of γ-aminobutyric acid (GABA) in plant tolerance to chilling stress having been widely discussed in the seedling stage, very little information is clear regarding its implication in chilling tolerance during the reproductive stage of the plant. Here, we investigated the influence of GABA (1 and 2mM) as a foliar application on tomato plants (Solanum lycopersicum L. cv. Super Marmande) subjected to chilling stress (5°C for 6h/day) for 5 successive days during the flowering stage. The results indicated that applied GABA differentially influenced leaf pigment composition by decreasing the chlorophyll a/b ratio and increasing the anthocyanin relative to total chlorophyll. However, carotenoids were not affected in both GABA-treated and non-treated stressed plants. Root tissues significantly exhibited an increase in thermo-tolerance in GABA-treated plants. Furthermore, applied GABA substantially alleviated the chilling-induced oxidative damage by protecting cell membrane integrity and reducing malondialdehyde (MDA) and H2O2. This positive effect of GABA was associated with enhancing the activity of phenylalanine ammonia-lyase (PAL), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Conversely, a downregulation of peroxidase (POX) and polyphenol oxidase (PPO) was observed under chilling stress which indicates its relevance in phenol metabolism. Interesting correlations were obtained between GABA-induced upregulation of sugar metabolism coinciding with altering secondary metabolism, activities of antioxidant enzymes, and maintaining the integrity of plastids' ultrastructure Eventually, applied GABA especially at 2mM improved the fruit yield and could be recommended to mitigate the damage of chilling stress in tomato plants.

12.
Pharmaceutics ; 13(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834174

RESUMEN

In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.

13.
Plants (Basel) ; 10(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834681

RESUMEN

Cysteine (Cys) and α-lipoic acid (ALA) are naturally occurring antioxidants (sulfur-containing compounds) that can protect plants against a wide spectrum of environmental stresses. However, up to now, there are no conclusive data on their integrative roles in mitigation of drought stress in wheat plants. Here, we studied the influence of ALA at 0.02 mM (grain dipping pre-cultivation treatment) and Cys (25 and 50 ppm as a foliar application) under well watered and deficit irrigation (100% and 70% of recommended dose). The results showed that deficit irrigation markedly caused obvious cellular oxidative damage as indicated by elevating the malondialdehyde (MDA) and hydrogen peroxide content (H2O2). Moreover, water stressed plants exhibited multiple changes in physiological metabolism, which affected the quantitative and qualitative variables of grain yield. The enzymatic antioxidants, including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POX) were improved by Cys application. SOD and APX had the same response when treated with ALA, but CAT and POX did not. Moreover, both studied molecules stimulated chlorophyll (Chl) and osmolytes' biosynthesis. In contrast, the Chl a/b ratio was decreased, while flavonoids were not affected by either of the examined molecules. Interestingly, all above-mentioned changes were associated with an improvement in the scavenging capacity of reactive oxygen species (ROS), leaf relative water content (RWC), grain number, total grain yield, weight of 1000 kernels, gluten index, falling number, and alveographic parameters (P, W, and P/L values). Furthermore, heatmap plot analysis revealed several significant correlations between different studied parameters, which may explore the importance of applied Cys and ALA as effective compounds in wheat cultivation under water deficit conditions.

14.
Plants (Basel) ; 10(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34686010

RESUMEN

In the present investigation, we study the effect of Bacillus thuringiensis MH161336 (106-8 CFU/cm3), silicon (25 mL L-1), and carrot extract (75 mL L-1) as seed primers, individually or in combination, on morphological, physio-biochemical and yield components of drought-stressed pea plants (Master B) during 2019/2020 and 2020/2021 seasons. Our results indicated that drought causes a remarkable reduction in plant height, leaf area, number of leaves per plant, and number of flowers per plant in stressed pea plants during two seasons. Likewise, number of pods, pod length, seeds weight of 10 dried plants, and dry weight of 100 seeds were decreased significantly in drought-stressed pea plants. Nevertheless, seed priming with the individual treatments or in combination boosted the morphological, physio-biochemical, and yield characters of pea plants. The best results were obtained with the Bacillus thuringiensis + carrot extract treatment, which led to a remarkable increase in the number of leaves per plant, leaf area, plant height, and number of flowers per plant in stressed pea plants in both seasons. Moreover, pod length, number of seeds per pod, seeds weight of 10 dried plants, and dry weight of 100 seeds were significantly increased as well. Bacillus thuringiensis + carrot extract treatment led to improved biochemical and physiological characters, such as relative water content, chlorophyll a, chlorophyll b, regulated the up-regulation of antioxidant enzymes, increased seed yield, and decreased lipid peroxidation and reactive oxygen species, mainly superoxide and hydrogen peroxide, in drought-stressed pea plants.

15.
Front Plant Sci ; 12: 695110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413865

RESUMEN

The multilayer perceptron (MLP) topology of an artificial neural network (ANN) was applied to create two predictor models in Agrobacterium-mediated gene transformation of tobacco. Agrobacterium-mediated transformation parameters, including Agrobacterium strain, Agrobacterium cell density, acetosyringone concentration, and inoculation duration, were assigned as inputs for ANN-MLP, and their effects on the percentage of putative and PCR-verified transgenic plants were investigated. The best ANN models for predicting the percentage of putative and PCR-verified transgenic plants were selected based on basic network quality statistics. Ex-post error calculations of the relative approximation error (RAE), the mean absolute error (MAE), the root mean square error (RMS), and the mean absolute percentage error (MAPE) demonstrated the prediction quality of the developed models when compared to stepwise multiple regression. Moreover, significant correlations between the ANN-predicted and the actual values of the percentage of putative transgenes (R 2 = 0.956) and the percentage of PCR-verified transgenic plants (R 2 = 0.671) indicate the superiority of the established ANN models over the classical stepwise multiple regression in predicting the percentage of putative (R 2 = 0.313) and PCR-verified (R 2= 0.213) transgenic plants. The best combination of the multiple inputs analyzed in this investigation, to achieve maximum actual and predicted transgenic plants, was at OD 600 = 0.8 for the LB4404 strain of Agrobacterium × 300 µmol/L acetosyringone × 20 min immersion time. According to the sensitivity analysis of ANN models, the Agrobacterium strain was the most important influential parameter in Agrobacterium-mediated transformation of tobacco. The prediction efficiency of the developed model was confirmed by the data series of Agrobacterium-mediated transformation of an important medicinal plant with low transformation efficiency. The results of this study are pivotal to model and predict the transformation of other important Agrobacterium-recalcitrant plant genotypes and to increase the transformation efficiency by identifying critical parameters. This approach can substantially reduce the time and cost required to optimize multi-factorial Agrobacterium-mediated transformation strategies.

16.
Foods ; 10(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359406

RESUMEN

Coatings that reduce the fat content of fried food are an alternate option to reach both health concerns and consumer demand. Mucilage of garden cress (Lepidium sativum) seed extract (MSE) was modified into an edible coating with or without ascorbic acid (AA) to coat fresh-cut potato strips during cold storage (5 °C and 95% RH for 12 days) and subsequent frying. Physical attributes such as color, weight loss, and texture of potato strips coated with MSE solutions with or without AA showed that coatings efficiently delayed browning, reduced weight loss, and maintained the texture during cold storage. Moreover, MSE with AA provided the most favorable results in terms of reduction in oil uptake. In addition, the total microbial count was lower for MSE-coated samples when compared to the control during the cold storage. MSE coating also performed well on sensory attributes, showing no off flavors or color changes. As a result, the edible coating of garden cress mucilage could be a promising application for extending shelf-life and reducing the oil uptake of fresh-cut potato strips.

17.
Environ Sci Pollut Res Int ; 28(46): 65116-65126, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34231149

RESUMEN

This study aims to re-examine the impacts of monetary and fiscal policy on environmental quality in ASEAN countries from 1990 to 2019. We utilized the panel and time series NARDL approach to explore the long-run and short-run estimates at a regional level and country level. ASEAN regional-wise analysis shows that contractionary monetary policy reduces the CO2 emissions, while expansionary monetary policy enhances CO2 emissions in the long run. The long-run coefficient further confirms that expansionary fiscal policy mitigates CO2 emissions in ASEAN. The impact of expansionary monetary and fiscal policy on CO2 emissions is positive and significant, while contractionary monetary and fiscal policy have an insignificant impact on CO2 emissions in the short run. ASEAN country-wise analysis also reported the country-specific estimates for the short and long run. Some policies can redesign in light of these novel findings in ASEAN economies.


Asunto(s)
Desarrollo Económico , Política Fiscal , Dióxido de Carbono/análisis , Contaminación Ambiental/análisis , Contaminación Ambiental/prevención & control , Políticas
18.
Environ Sci Pollut Res Int ; 28(43): 61801-61810, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34185275

RESUMEN

The fact is the stock market has an asymmetric effect on macroeconomic variables. In this study, we examine the nonlinear stock market reaction to the environment. This is the first study that considers the possibility of asymmetric effects of stock market on environmental pollution in Asia. This study considers the experiences of Asia economies by using the panel NARDL methodology over the data period from 1995 to 2019. The long-run panel NARDL results showed that the positive change in stock market increases carbon emissions. In adverse, the negative change in stock market significantly mitigates the carbon emissions in Asia. The short-run stock market asymmetric effects continued into the long-run asymmetric effects on the environment in Asia. Thus, policymakers and authorities should initiate to promote green financial activities in Asian stock markets.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Asia , Dióxido de Carbono/análisis , Contaminación Ambiental/análisis , Políticas
19.
Front Public Health ; 8: 594458, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363088

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by severe cytokine storm syndrome following inflammation. SARS-CoV-2 directly interacts with angiotensin-converting enzyme 2 (ACE-2) receptors in the human body. Complementary therapies that impact on expression of IgE and IgG antibodies, including administration of bee venom (BV), have efficacy in the management of arthritis, and Parkinson's disease. A recent epidemiological study in China showed that local beekeepers have a level of immunity against SARS-CoV-2 with and without previous exposure to virus. BV anti-inflammatory properties are associated with melittin and phospholipase A2 (PLA2), both of which show activity against enveloped and non-enveloped viruses, including H1N1 and HIV, with activity mediated through antagonist activity against interleukin-6 (IL-6), IL-8, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Melittin is associated with the underexpression of proinflammatory cytokines, including nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinases (ERK1/2), and protein kinase Akt. BV therapy also involves group III secretory phospholipase A2 in the management of respiratory and neurological diseases. BV activation of the cellular and humoral immune systems should be explored for the application of complementary medicine for the management of SARS-CoV-2 infections. BV "vaccination" is used to immunize against cytomegalovirus and can suppress metastases through the PLA2 and phosphatidylinositol-(3,4)-bisphosphate pathways. That BV shows efficacy for HIV and H1NI offers opportunity as a candidate for complementary therapy for protection against SARS-CoV-2.


Asunto(s)
Venenos de Abeja/farmacología , COVID-19/fisiopatología , Terapias Complementarias , Citocinas/inmunología , Antiinflamatorios , China , Humanos , Masculino , SARS-CoV-2
20.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096854

RESUMEN

An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV-vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13-40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (-19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25-100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA