Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Materials (Basel) ; 15(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35329533

RESUMEN

This paper presents the tribological properties of silicon and oxygen incorporated diamond-like carbon coatings tested in simulated body fluid and bovine serum albumin environments. The tests were performed using a ball-on-disc tribometer with an AISI316L steel counterbody. The wear tracks and wear scars were analyzed using optical microscopy and a nanoindenter. The interaction between the coating and the working environment was analyzed by Fourier transform infrared spectroscopy, whereas changes in the chemical structure before and after the tribological tests were compared with the use of Raman spectroscopy. Our study showed that the tribological parameters are governed by the presence of oxygen rather than the changing concentration of silicon. Both of the spectroscopy results confirm this statement, indicating that coatings with low concentrations of silicon and oxygen appear to be better candidates for biological applications in terms of wear resistance.

2.
Materials (Basel) ; 14(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918582

RESUMEN

Silver and copper as additives of various biomaterials have been reported as the potential solutions for biomedicine applications, mostly because of inducing bactericidal effects. The application of those admixtures in diamond-like carbon (DLC) coatings may be desirable for orthopedic implants. In the present manuscript, the biological effect of coatings with up to about 7 at.% and 14 at.% of, respectively, Cu and Ag is compared. The morphology, chemical structure, and composition of films deposited on AISI 316LVM and Ti6Al7Nb is characterized. The live/dead analysis conducted with Escherichia coli shows a higher bactericidal potential of silver than copper. Although the Cu-doped coatings can positively affect the proliferation of Saos-2 and EA.hy926 cell lines, the results of XTT test are on the verge of 70% of viability. Biological effect of silver on EA.hy926 cell lines is negative but that admixture ensures high proliferation of osteoblasts in contact with coatings deposited on titanium alloy (over 20% better than for substrate material). In that case, the viability is reaching about 85% for Ag-doped coatings on AISI 316LVM and 75% on Ti6Al7Nb. The results indicate that for the sake of bactericidal coatings that may promote osteointegration, the candidates are DLC with silver content no higher than 10 at.%.

3.
Materials (Basel) ; 13(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213027

RESUMEN

Titanium and its alloys are characterized by high mechanical strength, good corrosion resistance, high biocompatibility and relatively low Young's modulus. For many years, one of the most commonly used and described titanium alloys has been Ti-6Al-4V. The great interest in this two-phase titanium alloy is due to the broad possibilities of shaping its mechanical and physico-chemical properties using modern surface engineering techniques. The high coefficient of friction and tendency to galling are the most important drawbacks limiting the application of this material in many areas. In this regard, such methods as carburizing, nitriding, oxidation, and the synthesis of thin films using physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods may significantly improve the tribological properties of titanium alloys. The influence of thermo-chemical treatment (oxidation, carburizing and nitriding) on tribological properties and corrosion resistance of Ti-6Al-4V alloy is presented in this paper. The results include metallographic studies, analysis of tribological and mechanical properties and corrosion resistance as well. They indicate significant improvements in mechanical properties manifested by a twofold increase in hardness and improved corrosion resistance for the oxidation process. The carburizing was most important for reducing the coefficient of friction and wear rate. The nitriding process had the least effect on the properties of Ti-6Al-4V alloy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32575576

RESUMEN

Environmental risks, in particular climate change and environmental pollution, are among the key challenges faced by modern governments nowadays. Environmental risks are associated with specific costs and expenditures necessary to mitigate their negative effects. In this context, the financial system plays a significant role, particularly the public financial system, which allocates and redistributes public resources and has an impact on market participants by imposing environmental taxes. This study assessed the interdependence between environmental degradation and public expenditure, financial sector development, environmental taxes, and related socioeconomic policies. The aim was to diagnose and define the relationship between environmental degradation and sustainable fiscal instruments used in the financial system. The original research approach adopted in the study is the inclusion of variables representing a sustainable approach to assessment of the financial system. Two groups of European Union countries were analyzed for the period 2008-2017, namely, converging economies from Central and Eastern Europe and the largest developed economies of Western Europe. The authors found a strong relationship between greenhouse gas emissions and fiscal instruments, especially expenditure on research and development, and the development of the financial sector. In the case of environmental taxes, their impact differed depending on the country, being predominantly beneficial in countries with higher greenhouse gas emissions but unfavorable in countries with lower emissions levels.


Asunto(s)
Contaminación Ambiental , Gases de Efecto Invernadero , Impuestos , Política Ambiental , Europa (Continente) , Europa Oriental , Unión Europea
5.
Materials (Basel) ; 13(5)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182647

RESUMEN

Diamond-like carbon (DLC) flakes were produced using a dual-frequency method: microwave/radiofrequency plasma-assisted chemical vapour deposition (MW/RF PACVD) with the use of methane or its mixture with gases such as hydrogen, argon, oxygen or nitrogen. Their modification was performed using a planetary ball mill with and without a fluid: deionised water or methanol. Changes occurring in the morphology of flake surfaces were presented in pictures taken using a scanning electron microscope (SEM). Their composition and chemical structure were analysed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The presented research results show that it is possible to control the size of flakes and their chemical structure. An increase in the C-C sp3 bond content in produced carbon-based materials is only possible by modifying DLC flakes during their production process by introducing oxygen or argon into the working chamber together with the carbon-carrying gas. In the processes of mechanical DLC flake modification, it is necessary to add fluid to limit the occurrence of graphitisation processes. The research conducted shows that methanol is best used for this purpose as its use results in a decrease in the percentage of C-C sp3 bonds as compared to the materials, before milling, of only 1.7%. A frequent problem both in the production of DLC flakes and during their mechanical modification is the introduction of additional elements into their structure. Admixing electrode materials from the plasma-chemical device (iron) or grinding beads (zirconium) to DLC flakes was observed in our studies. These processes can be limited by the appropriate selection of production conditions or by mechanical modifications.

6.
Materials (Basel) ; 12(23)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795215

RESUMEN

Graphene is a very promising material for electronics applications. In recent years, its sensitivity to ultraviolet (UV) irradiation has been studied extensively. However, there is no clear answer to the question, which factor has a key influence on the sensitivity of graphene to UV. In order to check the influence of the final substrate on the electrical response, graphene transferred on polymeric and non-polymeric substrate was investigated. To achieve this goal three polymeric and three non-polymeric substrates were tested. The results of the preliminary tests indicated the different character of the reaction on UV irradiation in each of group. To explain the reason of the difference, the complementary studies were done. The samples that were resistant to high temperature were annealed in a vacuum at 500 °C to get rid of water trapped between graphene and the substratum. The samples after annealing reacted less dynamically to UV irradiation. Moreover, the progress of changes in electrical response of the annealed samples had a similar character to the polymeric substrates, with the hydrophobic nature of the surface. These studies clearly prove that the sensitivity of graphene to UV irradiation is influenced by water trapped under the graphene.

7.
Braz. arch. biol. technol ; 59: e16150305, 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-774487

RESUMEN

The aim of this study was to examine the thrombogenic properties of polyurethane that was surface modified with carbon coatings. Physicochemical properties of manufactured coatings were investigated using transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy and contact angle measurement methods. Samples were examined by the Impact-R method evaluating the level of platelets activation and adhesion of particular blood cell elements. The analysis of antimicrobial resistance against E. coli colonization and viability of endothelial cells showed that polyurethane modified with use of carbon layers constituted an interesting solution for biomedical application.

8.
J Nanosci Nanotechnol ; 10(2): 1367-70, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20352800

RESUMEN

We demonstrate here for the first time the relationship between electron work function of metallic substrate material, used for coating with thin dielectric carbon (DC) film, and surface thrombocompatybility of this structure. Thin dielectric layers of DC, with thickness below 1 microm, were deposited on medical steel 316L, titanium alloy Ti6Al4V and titanium nitride (TiN) using the RFCVD method. The values of the DC coated metallic electrode potential in water and in serum and the number of adhered blood platelets to the DC coated metals depended on the electron work function (phiM) of the metallic substrate. As the phiM increased, the electrode potentials increased, whereas the number of adhered blood platelets decreased. This effect permits controlling the interaction between blood and the thin DC films by selecting an appropriate metallic substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA