Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 625(7994): 329-337, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200294

RESUMEN

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Asunto(s)
Genoma Humano , Genómica , Migración Humana , Pueblos Nórdicos y Escandinávicos , Humanos , Dinamarca/etnología , Emigrantes e Inmigrantes/historia , Genotipo , Pueblos Nórdicos y Escandinávicos/genética , Pueblos Nórdicos y Escandinávicos/historia , Migración Humana/historia , Genoma Humano/genética , Historia Antigua , Polen , Dieta/historia , Caza/historia , Agricultores/historia , Cultura , Fenotipo , Conjuntos de Datos como Asunto
2.
Genet Sel Evol ; 55(1): 54, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491205

RESUMEN

BACKGROUND: In commercial pig production, reduction of harmful social behavioural traits, such as ear manipulation and tail biting, is of major interest. Moreover, farmers prefer animals that are easy to handle. The aim of this experiment was to determine whether selection on social breeding values (SBV) for growth rate in purebred pigs affects behaviour in a weighing crate, lesions from ear manipulation, and tail biting of their crossbred progeny. Data were collected on crossbred F1 pigs allocated to 274 pens, which were progeny of purebred Landrace sows and Yorkshire boars from a DanBred nucleus herd. RESULTS: Behaviour in the weighing crate scored on a three-level scale showed that groups of pigs with high SBV for growth rate were significantly calmer than groups of pigs with low SBV (P < 0.027). When the mean SBV in the group increased by 1 unit, the proportion of pigs that obtained a calmer score level was increased by 14%. A significant (p = 0.04), favourable effect of SBV was found on both the number of pigs with ear lesions in the group and the mean number of ear lesions per pig. For a 1 unit increase in mean SBV, the mean number of lesions per pig decreased by 0.06 from a mean of 0.98. Individual severity of ear lesions conditional upon the number of ear lesions was also significantly affected (p = 0.05) by the mean SBV in the group. In groups for which the mean SBV increased by 1 unit, the proportion of pigs that were observed with a lower severity score was increased by 20% on a three-level scale. Most pigs received no tail biting injuries and no effect of SBV was observed on the tail injury score. CONCLUSIONS: After 7 weeks in the finisher unit, crossbred progeny with high SBV were calmer in the weighing crate and had fewer ear lesions. These results indicate that selection of purebred parents for SBV for growth rate will increase welfare in their crossbred progeny by decreasing the number of ear lesions and making them easier to handle.


Asunto(s)
Conducta Animal , Mordeduras y Picaduras , Porcinos/genética , Animales , Femenino , Masculino , Cola (estructura animal)/lesiones
3.
J Anim Sci Biotechnol ; 14(1): 1, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593522

RESUMEN

BACKGROUND: Survival from birth to slaughter is an important economic trait in commercial pig productions. Increasing survival can improve both economic efficiency and animal welfare. The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.  RESULTS: We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model, a logit model, and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes (0, 1). The results show that in the case of only alive animals having genotype data, unbiased genomic predictions can be achieved when using variances estimated from pedigree-based model. Models using genomic information achieved up to 59.2% higher accuracy of estimated breeding value compared to pedigree-based model, dependent on genotyping scenarios. The scenario of genotyping all individuals, both dead and alive individuals, obtained the highest accuracy. When an equal number of individuals (80%) were genotyped, random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes. The linear model, logit model and probit model achieved similar accuracy. CONCLUSIONS: Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes, but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06% to 6.04%.

4.
Genet Sel Evol ; 54(1): 25, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387581

RESUMEN

BACKGROUND: In livestock breeding, selection for some traits can be improved with direct selection for crossbred performance. However, genetic analyses with phenotypes from crossbred animals require methods for multibreed relationship matrices; especially when some animals are rotationally crossbred. Multiple methods for multibreed relationship matrices exist, but there is a lack of knowledge on how these methods compare for prediction of breeding values with phenotypes from rotationally crossbred animals. Therefore, the objective of this study was to compare models that use different multibreed relationship matrices in terms of ability to predict accurate and unbiased breeding values with phenotypes from two-way rotationally crossbred animals. METHODS: We compared four methods for multibreed relationship matrices: numerator relationship matrices (NRM), García-Cortés and Toro's partial relationship matrices (GT), Strandén and Mäntysaari's approximation to the GT method (SM), and one NRM with metafounders (MF). The methods were compared using simulated data. We simulated two phenotypes; one with and one without dominance effects. Only crossbred animals were phenotyped and only purebred animals were genotyped. RESULTS: The MF and GT methods were the most accurate and least biased methods for prediction of breeding values in rotationally crossbred animals. Without genomic information, all methods were almost equally accurate for prediction of breeding values in purebred animals; however, with genomic information, the MF and GT methods were the most accurate. The GT, MF, and SM methods were the least biased methods for prediction of breeding values in purebred animals. CONCLUSIONS: For prediction of breeding values with phenotypes from rotationally crossbred animals, models using the MF method or the GT method were generally more accurate and less biased than models using the SM method or the NRM method.


Asunto(s)
Hibridación Genética , Modelos Genéticos , Animales , Genoma , Genotipo , Modelos Animales , Fenotipo
5.
PLoS One ; 16(5): e0249476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33979332

RESUMEN

Changes in funerary practices are key to the understanding of social transformations of past societies. Over the course of the Nordic Bronze Age, funerary practices changed from inhumation to cremation. The aim of this study is to shed light on this fundamental change through a cross-examination of archaeometric provenance data and archaeological discussions of the context and layouts of early cremation graves. To this end, we conducted 19 new provenance analyses of strontium isotopes from Early Nordic Bronze age contexts in Thisted County and Zealand and Late Bronze Age contexts from Thisted County and Vesthimmerland (Denmark). These data are subsequently compared with data from other extant relevant studies, including those from Late Bronze Age Fraugde on the Danish island of Fyn. Overall, the variations within our provenience data suggest that the integration and establishment of cremation may not have had a one-to-one relationship with in-migration to Nordic Bronze Age Denmark. Moreover, there seems to be no single blanket scenario which dictated the uptake of cremation as a practice within this part of Southern Scandinavia. By addressing habitus in relation to the deposition of cremations as juxtaposed with these provenance data¸ we hypothesize several potential pathways for the uptake of cremation as a new cultural practice within the Danish Nordic Bronze Age and suggest that this may have been a highly individual process, whose tempo may have been dictated by the specificities of the region(s) concerned.


Asunto(s)
Arqueología/métodos , Cremación , Isótopos de Estroncio/análisis , Dinamarca , Países Escandinavos y Nórdicos
6.
Genet Sel Evol ; 53(1): 33, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832423

RESUMEN

BACKGROUND: In breeding programs, recording large-scale feed intake (FI) data routinely at the individual level is costly and difficult compared with other production traits. An alternative approach could be to record FI at the group level since animals such as pigs are normally housed in groups and fed by a shared feeder. However, to date there have been few investigations about the difference between group- and individual-level FI recorded in different environments. We hypothesized that group- and individual-level FI are genetically correlated but different traits. This study, based on the experiment undertaken in purebred DanBred Landrace (L) boars, was set out to estimate the genetic variances and correlations between group- and individual-level FI using a bivariate random regression model, and to examine to what extent prediction accuracy can be improved by adding information of individual-level FI to group-level FI for animals recorded in groups. For both bivariate and univariate models, single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree-based BLUP (PBLUP) were implemented and compared. RESULTS: The variance components from group-level records and from individual-level records were similar. Heritabilities estimated from group-level FI were lower than those from individual-level FI over the test period. The estimated genetic correlations between group- and individual-level FI based on each test day were on average equal to 0.32 (SD = 0.07), and the estimated genetic correlation for the whole test period was equal to 0.23. Our results demonstrate that by adding information from individual-level FI records to group-level FI records, prediction accuracy increased by 0.018 and 0.032 compared with using group-level FI records only (bivariate vs. univariate model) for PBLUP and ssGBLUP, respectively. CONCLUSIONS: Based on the current dataset, our findings support the hypothesis that group- and individual-level FI are different traits. Thus, the differences in FI traits under these two feeding systems need to be taken into consideration in pig breeding programs. Overall, adding information from individual records can improve prediction accuracy for animals with group records.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/genética , Peso Corporal , Cruzamiento/métodos , Carácter Cuantitativo Heredable , Porcinos/genética , Animales , Ingestión de Alimentos , Linaje , Porcinos/fisiología
7.
Genet Sel Evol ; 53(1): 15, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579188

RESUMEN

BACKGROUND: Average daily gain (ADG) in pigs is affected by both direct and social genetic effects (SGE). However, selection for SGE in purebreds has not conclusively been shown to improve ADG in crossbreds, and it is unknown whether SGE in purebreds are equal to those in crossbreds. Moreover, SGE may reflect dominance related behaviour, which is affected by the variation in body weight within a group. Therefore, we hypothesized that (a) there is a positive effect of parent average SGE estimated in purebred pigs on phenotypic ADG in crossbred offspring, and (b) there is an interaction between SGE on ADG and standard deviation in starting weight of pigs within the group. We also hypothesized that (c) social genetic variance for ADG exists in crossbred pigs, and (d) there is a favourable genetic correlation between SGE on ADG in purebred and crossbred pigs. RESULTS: We found a statistically significant interaction between the standard deviation in starting weight and SGE within groups, and conditioning on the mean standard deviation in starting weight, we found a favourable regression coefficient (0.37 ± 0.21) of ADG in crossbreds on SGE in purebreds. Variances for SGE were small in both Landrace (L) and Yorkshire (Y), and higher for SGE in both the dam and sire component of crossbred YL. The genetic correlations between SGE in purebreds and the dam or sire component of SGE in crossbreds were also favourable (0.52 ± 0.48 and 0.34 ± 0.42, respectively), although not significantly different from 0. CONCLUSIONS: We confirmed that there is a positive effect of SGE estimated using purebred information on phenotypic ADG in crossbreds, and that the largest effect is achieved when the within-group variation in starting weight is small. Our results indicate that social genetic variance in crossbreds exists and that there is a favourable genetic correlation between social genetic effects in purebreds and crossbreds. Collectively, our results indicate that selection for SGE on ADG in purebreds in a nucleus farm environment with little competition for resources can improve ADG in crossbreds in a commercial environment.


Asunto(s)
Interacción Gen-Ambiente , Selección Artificial , Medio Social , Porcinos/genética , Aumento de Peso , Animales , Femenino , Hibridación Genética , Endogamia , Masculino , Selección Genética , Porcinos/fisiología
9.
Heredity (Edinb) ; 126(1): 206-217, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32665691

RESUMEN

Records on groups of individuals could be valuable for predicting breeding values when a trait is difficult or costly to measure on single individuals, such as feed intake and egg production. Adding genomic information has shown improvement in the accuracy of genetic evaluation of quantitative traits with individual records. Here, we investigated the value of genomic information for traits with group records. Besides, we investigated the improvement in accuracy of genetic evaluation for group-recorded traits when including information on a correlated trait with individual records. The study was based on a simulated pig population, including three scenarios of group structure and size. The results showed that both the genomic information and a correlated trait increased the accuracy of estimated breeding values (EBVs) for traits with group records. The accuracies of EBV obtained from group records with a size 24 were much lower than those with a size 12. Random assignment of animals to pens led to lower accuracy due to the weaker relationship between individuals within each group. It suggests that group records are valuable for genetic evaluation of a trait that is difficult to record on individuals, and the accuracy of genetic evaluation can be considerably increased using genomic information. Moreover, the genetic evaluation for a trait with group records can be greatly improved using a bivariate model, including correlated traits that are recorded individually. For efficient use of group records in genetic evaluation, relatively small group size and close relationships between individuals within one group are recommended.


Asunto(s)
Cruzamiento , Genómica , Animales , Porcinos
10.
J Anim Sci ; 98(7)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32687196

RESUMEN

Whole-genome sequencing of 217 animals from three Danish commercial pig breeds (Duroc, Landrace [LL], and Yorkshire [YY]) was performed. Twenty-six million single-nucleotide polymorphisms (SNPs) and 8 million insertions or deletions (indels) were uncovered. Among the SNPs, 493,099 variants were located in coding sequences, and 29,430 were predicted to have a high functional impact such as gain or loss of stop codon. Using the whole-genome sequence dataset as the reference, the imputation accuracy for pigs genotyped with high-density SNP chips was examined. The overall average imputation accuracy for all biallelic variants (SNP and indel) was 0.69, while it was 0.83 for variants with minor allele frequency > 0.1. This study provides whole-genome reference data to impute SNP chip-genotyped animals for further studies to fine map quantitative trait loci as well as improving the prediction accuracy in genomic selection. Signatures of selection were identified both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during breed development or subsequent divergent selection. However, the fixation indices did not indicate a strong divergence among these three breeds. In LL and YY, the integrated haplotype score identified genomic regions under recent selection. These regions contained genes for olfactory receptors and oxidoreductases. Olfactory receptor genes that might have played a major role in the domestication were previously reported to have been under selection in several species including cattle and swine.


Asunto(s)
Variación Genética , Genómica , Porcinos/genética , Animales , Cruzamiento , Dinamarca , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Sitios de Carácter Cuantitativo
11.
J Anim Sci ; 98(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492122

RESUMEN

Longevity in commercial sows is often selected for through stayability traits measured in purebred animals. However, this may not be justifiable because longevity and stayability may be subject to both genotype by environment interaction (G × E) and genotype by genotype interaction (G × G). This study tested the hypothesis that stayability to service after first parity is more strongly genetically correlated with longevity in commercial herds when stayability is measured in commercial herds rather than multiplier herds. The analysis was based on farrowing- and service-records from 470,824 sows (189,263 multiplier; 281,561 commercial) and 300 herds (156 multiplier; 144 commercial sows). Multiplier sows were either purebred Landrace or Yorkshire and commercial sows were mainly rotationally crossbreds between the two breeds. Commercial longevity was defined as age in days when culled (LongC), and stayability to service after first parity was defined for both commercial sows (StayC) and multiplier sows (StayM). The genetic correlations between LongC, StayC, and StayM were estimated by restricted maximum likelihood using linear mixed models. Genetic parameters were estimated separately for Landrace and Yorkshire. In Landrace, the genetic correlations between LongC and StayC, LongC and StayM, and StayC and StayM were 0.86 ± 0.02, 0.24 ± 0.05, and 0.34 ± 0.06, respectively. In Yorkshire, the genetic correlations between LongC and StayC, LongC and StayM, and StayC and StayM were 0.81 ± 0.03, 0.17 ± 0.05, and 0.18 ± 0.7, respectively. Conclusively, longevity in commercial herds is more strongly correlated with stayability when stayability is measured in commercial herds rather than multiplier herds.


Asunto(s)
Longevidad/genética , Porcinos/genética , Porcinos/fisiología , Animales , Cruzamiento , Femenino , Genotipo , Modelos Lineales , Modelos Genéticos , Paridad , Embarazo
12.
Genet Sel Evol ; 52(1): 23, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375639

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

13.
Genet Sel Evol ; 51(1): 45, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426753

RESUMEN

BACKGROUND: Crossbreeding is widely used in pig production because of the benefits of heterosis effects and breed complementarity. Commonly, sire lines are bred for traits such as feed efficiency, growth and meat content, whereas maternal lines are also bred for reproduction and longevity traits, and the resulting three-way crossbred pigs are used for production of meat. The most important genetic basis for heterosis is dominance effects, e.g. removal of inbreeding depression. The aims of this study were to (1) present a modification of a previously developed model with additive, dominance and inbreeding depression genetic effects for analysis of data from a purebred sire line and three-way crossbred pigs; (2) based on this model, present equations for additive genetic variances, additive genetic covariance, and estimated breeding values (EBV) with associated accuracies for purebred and crossbred performances; (3) use the model to analyse four production traits, i.e. ultra-sound recorded backfat thickness (BF), conformation score (CONF), average daily gain (ADG), and feed conversion ratio (FCR), recorded on Danbred Duroc and Danbred Duroc-Landrace-Yorkshire crossbred pigs reared in the same environment; and (4) obtain estimates of genetic parameters, additive genetic correlations between purebred and crossbred performances, and EBV with associated accuracies for purebred and crossbred performances for this data set. RESULTS: Additive genetic correlations (with associated standard errors) between purebred and crossbred performances were equal to 0.96 (0.07), 0.83 (0.16), 0.75 (0.17), and 0.87 (0.18) for BF, CONF, ADG, and FCR, respectively. For BF, ADG, and FCR, the additive genetic variance was smaller for purebred performance than for crossbred performance, but for CONF the reverse was observed. EBV on Duroc boars were more accurate for purebred performance than for crossbred performance for BF, CONF and FCR, but not for ADG. CONCLUSIONS: Methodological developments led to equations for genetic (co)variances and EBV with associated accuracies for purebred and crossbred performances in a three-way crossbreeding system. As illustrated by the data analysis, these equations may be useful for implementation of genomic selection in this system.


Asunto(s)
Cruzamiento , Depresión Endogámica , Modelos Genéticos , Modelos Estadísticos , Porcinos/genética , Animales , Cruzamientos Genéticos , Femenino , Variación Genética , Hibridación Genética , Masculino
14.
G3 (Bethesda) ; 9(9): 2935-2940, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31278176

RESUMEN

The efficiency of feed utilization plays an important role in animal breeding. However, measuring feed intake (FI) is costly on an individual basis under practical conditions. Using group measurements to model FI could be practically feasible and cost-effective. The objectives of this study were to develop a random regression model based on repeated group measurements with consideration of missing phenotypes caused by drop out animals. Focus is on variance components (VC) estimation and genetic evaluation, and to investigate the effect of group composition on VC estimation and genetic evaluation using simulated datasets. Data were simulated based on individual FI in a pig population. Each individual had measurement on FI at 6 different time points, reflecting 6 different weeks during the test period. The simulated phenotypes consisted of additive genetic, permanent environment, and random residual effects. Additive genetic and permanent environmental effects were both simulated and modeled by first order Legendre polynomials. Three grouping scenarios based on genetic relationships among the group members were investigated: (1) medium within and across pen genetic relationship; (2) high within group relationship; (3) low within group relationship. To investigate the effect of the drop out animals during test period, a proportion (15%) of animals with individual phenotypes was set as the drop out animals, and two drop out scenarios within each grouping scenario were assessed: (1) animals were randomly dropped out; (2) animals with lower phenotypes were dropped out based on the ranking at each time point. The results show that using group measurements yielded similar VCs estimates but with larger SDs compared with the corresponding scenario of using individual measurements. Compared to scenarios without drop out, similar VC estimates were observed when animals were dropped out randomly, whereas reduced VC estimates were observed when animals were dropped out by the ranking of phenotypes. Different grouping scenarios produced similar VC estimates. Compared to scenarios without drop out, there were no loss of accuracies of genetic evaluation for drop out scenarios. However, dropping out animals by the ranking of phenotypes produced larger bias of estimated breeding values compared to the scenario without dropped out animals and scenario of dropping out animals by random. In conclusion, with an optimized group structure, the developed model can properly handle group measurements with drop out animals, and can achieve comparable accuracy of genetic evaluation for traits measured at the group level.


Asunto(s)
Ingestión de Alimentos/genética , Modelos Genéticos , Análisis de Varianza , Alimentación Animal , Animales , Femenino , Masculino , Modelos Estadísticos , Fenotipo , Distribución Aleatoria , Análisis de Regresión , Porcinos
15.
Cardiovasc Pathol ; 39: 25-29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30597423

RESUMEN

PURPOSE: Improve mapping and registration of longitudinal view on histopathology vessels in a three-dimensional alignment procedure for postmortem quantitative coronary plaque analyses. This new procedure is applied and results shown using calcified coronary plaque analyses within post-mortem computed tomography angiography (PMCTA), optical coherence tomography (OCT) and the gold standard of histopathology. RESULTS: In total, 338 annotated histopathology images were included, 166 PMCTA transversal images and 285 OCT images were aligned in the comparison. The results from the comparison using the alignment procedure showed overall that the calcified plaques seem to be overestimated by PMCTA and underestimated by OCT. CONCLUSIONS: The 3D fusion approach, aligning the images of PMCTA, OCT and histopathology as gold standard allowed for a slice-based comparison of the different modalities. The results showed that PMCTA overestimates the calcified plaques while OCT underestimates these, compared to histopathology.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Placa Aterosclerótica , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía de Coherencia Óptica/métodos , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/patología , Autopsia , Biopsia , Enfermedad de la Arteria Coronaria/mortalidad , Humanos , Imagen Multimodal , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Calcificación Vascular/mortalidad
16.
Transl Anim Sci ; 3(2): 885-892, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32704853

RESUMEN

In pig production, Pietrain and Duroc lines are often used as terminal sire lines to produce crossbred slaughter pigs. The objective of this study was to identify the differences in paternal fertility and mortality during the suckling period of crossbred progeny from Pietrain and Duroc terminal sire lines. In total, 87 purebred Duroc boars and 68 purebred Pietrain boars were used as terminal sires to produce 1,823 crossbred Duroc litters (D-litters) and 1,705 crossbred Pietrain litters (P-litters) in two production herds. The sows were crosses between DanBred Landrace and Yorkshire (F1). All boars were kept at the same artificial insemination (AI) station, and all semen doses were produced in the same laboratory. The experiment was balanced according to herd, boars, and time, with approximately 13 sows from each herd mated to each boar within each breed. The results showed higher fertility expressed as litter size at birth in P-litters compared with D-litters led to 0.5 higher total number born (TNB) for P-litters (P = 0.0076). However, piglet mortality including number of stillborn piglets was lower in D-litters compared with P-litters (P < 0.0001), and 5 d after farrowing, the average litter size in P-litters ranged 0.4 below the litter size in D-litters (P < 0.027). At 21 d after birth, mean litter size in P- and D-litters were 14.5 and 14.9 piglets per litter, respectively (P < 0.015). This indicated that Pietrain progenies were weaker than Duroc progenies, and it was concluded that use of Duroc boars as the terminal sire line led to lower piglet mortality. In the two herds, the mean piglet mortality rate including still born piglets ranged from 19.5% to 23.6% and from 17.6% to 19.1% in P- and D-litters, respectively.

17.
J Anim Sci ; 96(12): 4967-4977, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30462232

RESUMEN

The aim of this study was to examine (i) the genetic variation in macro-environmental sensitivity (macro-ES) for ADG in Danish Duroc pigs, (ii) the genetic heterogeneity among sexes, and (iii) residual variance heterogeneity among herds. Record of ADG for 32,297 boars (19 herds) and 42,724 gilts (16 herds) was used for analysis. The data were provided by the National Danish Pig Research Centre. The analysis was performed by fitting univariate reaction norm models with the herd-year-month on test (HYM) effect as environmental covariates and herd-specific residual variance for boars and gilts separately under a Bayesian setting. The environmental covariate was inferred simultaneously with other parameters of the model. Gibbs sampling was used to sample model dispersion and location parameters. The posterior means and highest posterior density intervals of the additive genetic variance, genetic correlations for ADG, and heritability were calculated over the continuous environmental range of -3σh to +3σh (SD of the HYM effect). The coheritability of ADG at the average environmental level and ADG in the environments along the -3σh to +3σh environmental gradient were also calculated. The analysis showed significant variation in macro-ES, revealing genotype by environment interactions (G × E) for ADG. The presence of G × E resulted in changes in additive genetic variance and heritability across the -3σh to +3σh range. The genetic correlations were high and positive between ADG in environments differing by 1σh units or less and decreased to moderately positive between ADG in the extreme environments in both sexes. The coheritability of ADG in the environment at the average level and the -3σh environment for boars were greater than the heritability in the environment at the average level, while it was less for gilts. The coheritability of ADG in the environment at the average level and the +3σh environment for boars was less than heritability in the environment at the average level, while it was either the same or greater for gilts, depending on the residual variance. Boars had larger additive genetic and residual variances than gilts. Heterogeneity of residual variances across herds was shown for both sexes. In conclusion, this study shows the presence of macro-ES, genetic variance heterogeneity among sexes for ADG in pigs, and residual variance heterogeneity across herds.


Asunto(s)
Ambiente , Regulación de la Expresión Génica/fisiología , Variación Genética , Porcinos/crecimiento & desarrollo , Porcinos/genética , Animales , Teorema de Bayes , Femenino , Genotipo , Estudios Longitudinales , Masculino
18.
Genet Sel Evol ; 50(1): 42, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30107792

RESUMEN

BACKGROUND: Records on groups of individuals rather than on single individuals could be valuable for predicting breeding values (BV) of the traits that are difficult or costly to measure individually, such as feed intake in pigs or beef cattle. Here, we present a model, which handles group records from varying group sizes and involves multiple fixed and random effects, for estimating variance components and predicting BV. Moreover, using simulation, we investigated the efficiency of group records for predicting BV in situations with various group sizes and structures, and factors that affect the trait. RESULTS: The results show that the presented model for group records worked well and that variances estimated from group records with varying group sizes were consistent with those estimated from individual records, but with larger standard errors. Ignoring litter and pen effects had very little or no influence on the accuracy of estimated BV (EBV) obtained from group records. However, ignoring litter effects resulted in biased estimates of additive genetic variance and EBV. The presence of litter and pen effects on phenotypes decreased the accuracy of EBV although the prediction model fitted both effects. Having more littermates in the same pen led to a higher accuracy of EBV. The decay of EBV accuracy with increasing group size was more marked for scenarios with litter and pen effects than without. When litters of six individuals were divided into two pens, accuracies of EBV obtained from group records with a size up to 12 (average 9.6) and up to 24 (average 19.2) were 66.6 and 57.6% of those estimated from individual records in the scenario with litter and pen effects on phenotypes. These percentages reached 77.0 and 68.4% in the scenario without litter and pen effects on phenotypes. CONCLUSIONS: Our results indicate that the model works appropriately for the analysis of group records from varying group sizes. Using group records for genetic evaluation of traits such as feed intake in pig is feasible and the efficiency of the resulting estimates depends on the size and structure of the groups and on the magnitude of the variances for litter and pen effects.


Asunto(s)
Cruzamiento/métodos , Variación Genética , Modelos Genéticos , Registros , Crianza de Animales Domésticos/métodos , Animales , Carácter Cuantitativo Heredable , Tamaño de la Muestra , Porcinos/genética
19.
Org Biomol Chem ; 15(13): 2784-2790, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28272644

RESUMEN

We introduce bis-aryl croconamides as a new member in the family of dual hydrogen bonding anion receptors. In this study a series of croconamides are synthesised, and the selectivity for anion binding is investigated (Cl- > Br- > I- in CH2Cl2). The croconamides exhibit different structures in the crystal phase depending on the substituents on the aromatic rings, and furthermore, the crystal structure revealed the presence of tautomers. DFT calculations elucidated the complex structures formed upon addition of anion to the croconamides, confirming the order of association constants towards the halogen anions. The use of croconamides as organocatalysts in a proof-of-concept study is demonstrated in the formation of THP ethers. In addition to this, construction of a Hammet plot further elucidates the mechanism in action on formation of THP ethers.

20.
Genet Sel Evol ; 49(1): 12, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28118822

RESUMEN

BACKGROUND: Selection for sound conformation has been widely used as a primary approach to reduce lameness and leg weakness in pigs. Identification of genomic regions that affect conformation traits would help to improve selection accuracy for these lowly to moderately heritable traits. Our objective was to identify genetic factors that underlie leg and back conformation traits in three Danish pig breeds by performing a genome-wide association study followed by meta-analyses. METHODS: Data on four conformation traits (front leg, back, hind leg and overall conformation) for three Danish pig breeds (23,898 Landrace, 24,130 Yorkshire and 16,524 Duroc pigs) were used for association analyses. Estimated effects of single nucleotide polymorphisms (SNPs) from single-trait association analyses were combined in two meta-analyses: (1) a within-breed meta-analysis for multiple traits to examine if there are pleiotropic genetic variants within a breed; and (2) an across-breed meta-analysis for a single trait to examine if the same quantitative trait loci (QTL) segregate across breeds. SNP annotation was implemented through Sus scrofa Build 10.2 on Ensembl to search for candidate genes. RESULTS: Among the 14, 12 and 13 QTL that were detected in the single-trait association analyses for the three breeds, the most significant SNPs explained 2, 2.3 and 11.4% of genetic variance for back quality in Landrace, overall conformation in Yorkshire and back quality in Duroc, respectively. Several candidate genes for these QTL were also identified, i.e. LRPPRC, WRAP73, VRTN and PPARD likely control conformation traits through the regulation of bone and muscle development, and IGF2BP2, GH1, CCND2 and MSH2 can have an influence through growth-related processes. Meta-analyses not only confirmed many significant SNPs from single-trait analyses with higher significance levels, but also detected several additional associated SNPs and suggested QTL with possible pleiotropic effects. CONCLUSIONS: Our results imply that conformation traits are complex and may be partly controlled by genes that are involved in bone and skeleton development, muscle and fat metabolism, and growth processes. A reliable list of QTL and candidate genes was provided that can be used in fine-mapping and marker assisted selection to improve conformation traits in pigs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Genómica , Carácter Cuantitativo Heredable , Porcinos/genética , Animales , Cruzamiento , Genómica/métodos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...