Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Control Release ; 342: 14-25, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953983

RESUMEN

Bispecific T-Cell Engagers (BiTEs) are effective at inducing remission in hematologic cancers, but their use in solid tumors has been challenging due to their extreme potency and on-target, off-tumor toxicities in healthy tissue. Their deployment against solid tumors is further complicated by insufficient drug penetration, a hostile tumor microenvironment, and immune escape. To address these challenges, we developed targeted nanocarriers that can deliver in vitro-transcribed mRNA encoding BiTEs to host myeloid cells - a cell type that is actively recruited into the tumor microenvironment. We demonstrate in an immunocompetent mouse model of ovarian cancer, that infusion of these nanoparticles directs BiTE expression to tumor sites, which reshapes the microenvironment from suppressive to permissive and triggers disease regression without systemic toxicity. In contrast, conventional injections of recombinant BiTE protein at doses required to achieve anti-tumor activity, induced systemic inflammatory responses and severe tissue damage in all treated animals. Implemented in the clinic, this in situ gene therapy could enable physicians - with a single therapeutic - to safely target tumor antigen that would otherwise not be druggable due to the risks of on-target toxicity and, at the same time, reset the tumor milieu to boost key mediators of antitumor immune responses.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Modelos Animales de Enfermedad , Ratones , Células Mieloides/metabolismo , Neoplasias/metabolismo , Linfocitos T
2.
Water Res ; 153: 208-216, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30716564

RESUMEN

Phosphate, which contains the essential element phosphorous (P), is a necessary fertilizer for agriculture, but the current phosphate deposits are running out and alternative sources are needed. Sludge obtained from wastewater treatment plants contains high concentrations of phosphorus and represents an alternative, sustainable source. In this study, sludge obtained from a wastewater treatment plant with biological and chemical phosphorus removal was acidified (pH = 3, 4, 5 and 6) to release orthophosphate followed by sequestration of the orthophosphate by a zinc aluminum layered double hydroxide (Zn2Al-LDH). Sulfuric acid (H2SO4), nitric acid (HNO3), and hydrochloric acid (HCl) was tested, which showed that only sulfate anions compete with phosphate and results in reduced phosphate recovery (25-35%). The orthophosphate concentration in the liquid phase increased from 20% (raw sludge) to 75% of the total phosphorus concentration at a pH of 3, which enhanced the phosphate uptake by the ZnAl-LDH from 1.7 ±â€¯0.2% to 60.3 ±â€¯0.6%. During acidification, the competing anion carbonate is degassed as CO2, which further improved the phosphate uptake. PXRD showed the intercalation of carbonate in the LDH in the raw sludge at pH = 8, whereas orthophosphate was intercalated at lower pH values. 27Al MAS NMR spectroscopy and powder X-ray diffraction (PXRD) proved preservation of the LDH at all pH values. Furthermore, about a fourth of the Al is present as an amorphous aluminum phosphate (AlPO4) upon exposure to phosphate at low pH (pH = 3 and 5) based on 27Al MAS NMR spectroscopy. At a pH of 6 about a third of the P is present as brushite (CaHPO4·2H2O).


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aluminio , Hidróxido de Aluminio , Hidróxidos
3.
Mar Genomics ; 37: 1-17, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28970064

RESUMEN

The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Investigación Interdisciplinaria , Regiones Antárticas , Biodiversidad , Cambio Climático , Congresos como Asunto , Ecología , Genómica
4.
Water Res ; 112: 110-119, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153697

RESUMEN

Exposure to bioaerosols can pose a health risk to workers at wastewater treatment plants (WWTPs) and to habitants of their surroundings. The main objective of this study was to examine the presence of harmful microorganisms in the air emission from a new type of hospital WWTP employing advanced wastewater treatment technologies. Air particle measurements and sampling of inhalable bacteria, endotoxin and noroviruses (NoVs) were performed indoor at the WWTP and outside at the WWTP ventilation air exhaust, downwind of the air exhaust, and upwind of the WWTP. No significant differences were seen in particle and endotoxin concentrations between locations. Bacterial concentrations were comparable or significantly lower in the exhaust air than inside the WWTP and in the upwind reference. Bacterial isolates were identified using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In total, 35 different bacterial genera and 64 bacterial species were identified in the air samples. Significantly higher genus and species richness was found with an Andersen Cascade Impactor compared with filter-based sampling. No pathogenic bacteria were found in the exhaust air. Streptomyces was the only bacterium found in the air both inside the WWTP and at the air emission, but not in the upwind reference. NoV genomes were detected in the air inside the WWTP and at the air exhaust, albeit in low concentrations. As only traces of NoV genomes could be detected in the exhaust air they are unlikely to pose a health risk to surroundings. Hence, we assess the risk of airborne exposure to pathogenic bacteria and NoVs from the WWTP air emission to surroundings to be negligible. However, as a slightly higher NoV concentration was detected inside the WWTP, we cannot exclude the possibility that exposure to airborne NoVs can pose a health risk to susceptible to workers inside the WWTP, although the risk may be low.


Asunto(s)
Microbiología del Aire , Aguas Residuales/microbiología , Bacterias/aislamiento & purificación , Norovirus , Emisiones de Vehículos
5.
Sci Rep ; 6: 26189, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27189430

RESUMEN

Although most models suggest continental Antarctica was covered by ice during the Last Glacial Maximum (LGM) it has been speculated that endemic species of soil invertebrates could have survived the Pleistocene at high elevation habitats protruding above the ice sheets. We analyzed a series of soil samples from different elevations at three locations along the Beardmore Glacier in the Transantarctic Mountains (in order of increasing elevation): Ebony Ridge (ER), Cloudmaker (CM), and Meyer Desert (MD). Geochemical analyses show the MD soils, which were exposed during the LGM, were the least weathered compared to lower elevations, and also had the highest total dissolved solids (TDS). MD soils are dominated by nitrate salts (NO3/Cl ratios >10) that can be observed in SEM images. High δ(17)O and δ(18)O values of the nitrate indicate that its source is solely of atmospheric origin. It is suggested that nitrate concentrations in the soil may be utilized to determine a relative "wetting age" to better assess invertebrate habitat suitability. The highest elevation sites at MD have been exposed and accumulating salts for the longest times, and because of the salt accumulations, they were not suitable as invertebrate refugia during the LGM.


Asunto(s)
Ecosistema , Suelo/química , Regiones Antárticas , Fenómenos Geológicos , Cubierta de Hielo , Nitratos/análisis
6.
Animal ; 10(6): 1067-75, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26330119

RESUMEN

Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference data and including cows in reference population are efficient approaches to increase reliability of genomic prediction. Therefore, genomic selection is promising for numerically small population.


Asunto(s)
Cruzamiento , Bovinos/clasificación , Bovinos/genética , Genómica/métodos , Genómica/normas , Animales , Dinamarca , Femenino , Fertilidad/genética , Genoma/genética , Genotipo , Modelos Lineales , Masculino , Modelos Genéticos , Fenotipo , Estándares de Referencia , Reproducibilidad de los Resultados , Estados Unidos
7.
J Dairy Sci ; 98(12): 9026-34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433415

RESUMEN

A bias in the trend of genomic estimated breeding values (GEBV) was observed in the Danish Jersey population where the trend of GEBV was smaller than the deregressed proofs for individuals in the validation population. This study attempted to improve the prediction reliability and reduce the bias of predicted genetic trend in Danish Jersey. The data consisted of 1,238 Danish Jersey bulls and 611,695 cows. All bulls were genotyped with the 54K chip, and 1,744 cows were genotyped with either 7K chips (1,157 individuals) or 54K chips (587 individuals). The trait used in the analysis was protein yield. All cows with EBV were used in a single-step approach. Deregressed proofs were used as the response variable. Four alternative approaches were compared with genomic best linear unbiased prediction (GBLUP) model with bulls in the reference data (GBLUPBull): (1) GBLUP with both bulls and genotyped cows in the reference data; (2) GBLUP including a year of birth effect; (3) GEBV from a GBLUP model that accounted for the difference of EBV between dams and maternal grandsires; and (4) using a single-step approach. The results indicated all 4 alternatives could reduce the bias of predicted genetic trend and that the single-step approach performed best. However, not all these approaches improved reliability or reduced inflation of GEBV. The reliability was 0.30 and regression coefficients of deregressed proofs on GEBV were 0.69 in the scenario GBLUPBull. When genotyped cows were included in the reference population, the regression coefficients decreased to 0.59 but the reliability increased to 0.35. If a year effect was included in the model, the prediction reliability decreased to 0.29 and the regression coefficient improved to 0.75. The method in which GEBV were adjusted for the difference between dam EBV and maternal grandsire EBV led to much lower regression coefficients though the reliability increased to 0.4. The single-step approach improved both the reliability, to 0.38 and regression coefficient to 0.78. Therefore, the bias in genetic trend was reduced. The results suggest that implementing the single-step approach is an effective way to improve genomic prediction in Danish Jersey cattle.


Asunto(s)
Bovinos/genética , Genoma , Genómica/métodos , Animales , Sesgo , Cruzamiento , Femenino , Genotipo , Técnicas de Genotipaje , Modelos Lineales , Masculino , Modelos Genéticos , Modelos Teóricos , Fenotipo , Reproducibilidad de los Resultados
8.
J Dairy Sci ; 98(12): 9051-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433419

RESUMEN

Including genotyped females in a reference population (RP) is an obvious way to increase the RP in genomic selection, especially for dairy breeds of limited population size. However, the incorporation of these females must be conducted cautiously because of the potential preferential treatment of the genotyped cows and lower reliabilities of phenotypes compared with the proven pseudo-phenotypes of bulls. Breeding organizations in Denmark, Finland, and Sweden have implemented a female-genotyping project with the possibility of genotyping entire herds using the low-density (LD) chip. In the present study, 5 scenarios for building an RP were investigated in the Nordic Jersey population: (1) bulls only, (2) bulls with females from the LD project, (3) bulls with females from the LD project plus non-LD project females genotyped before their first calving, (4) bulls with females from the LD project plus non-LD project females genotyped after their first calving, and (5) bulls with all genotyped females. The genomically enhanced breeding value (GEBV) was predicted for 8 traits in the Nordic total merit index through a genomic BLUP model using deregressed proof (DRP) as the response variable in all scenarios. In addition, (daughter) yield deviation and raw phenotypic data were studied as response variables for comparison with the DRP, using stature as a model trait. The validation population was formed using a cut-off birth year of 2005 based on the genotyped Nordic Jersey bulls with DRP. The average increment in reliability of the GEBV across the 8 traits investigated was 1.9 to 4.5 percentage points compared with using only bulls in the RP (scenario 1). The addition of all the genotyped females to the RP resulted in the highest gain in reliability (scenario 5), followed by scenario 3, scenario 2, and scenario 4. All scenarios led to inflated GEBV because the regression coefficients are less than 1. However, scenario 2 and scenario 3 led to less bias of genomic predictions than scenario 5, with regression coefficients showing less deviation from scenario 1. For the study on stature, the daughter yield deviation/daughter yield deviation performed slightly better than the DRP as the response variable in the genomic BLUP (GBLUP) model. Therefore, adding unselected females in the RP could significantly improve the reliabilities and tended to reduce the prediction bias compared with adding selectively genotyped females. Although the DRP has performed robustly so far, the use of raw data is recommended with a single-step model as an optimal solution for future genomic evaluations.


Asunto(s)
Bovinos/genética , Genómica/métodos , Animales , Cruzamiento , Dinamarca , Ácidos Grasos/análisis , Femenino , Finlandia , Genoma , Genotipo , Masculino , Leche/química , Proteínas de la Leche/análisis , Modelos Genéticos , Fenotipo , Reproducibilidad de los Resultados , Selección Genética , Suecia
9.
CPT Pharmacometrics Syst Pharmacol ; 4(3): e00019, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26225238

RESUMEN

Human cancers are incredibly diverse with regard to molecular aberrations, dependence on oncogenic signaling pathways, and responses to pharmacological intervention. We wished to assess how cellular dependence on the canonical PI3K vs. MAPK pathways within HER2+ cancers affects responses to combinations of targeted therapies, and biomarkers predictive of their activity. Through an integrative analysis of mechanistic model simulations and in vitro cell line profiling, we designed a six-arm decision tree to stratify treatment of HER2+ cancers using combinations of targeted agents. Activating mutations in the PI3K and MAPK pathways (PIK3CA and KRAS), and expression of the HER3 ligand heregulin determined sensitivity to combinations of inhibitors against HER2 (lapatinib), HER3 (MM-111), AKT (MK-2206), and MEK (GSK-1120212; trametinib), in addition to the standard of care trastuzumab (Herceptin). The strategy used to identify effective combinations and predictive biomarkers in HER2-expressing tumors may be more broadly extendable to other human cancers.

10.
J Dairy Sci ; 98(5): 3508-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25771051

RESUMEN

The effect on prediction accuracy for Jersey genomic evaluations of Danish and US bulls from using a larger reference population was assessed. Each country contributed genotypes from 1,157 Jersey bulls to the reference population of the other. Data were separated into reference (US only, Danish only, and combined US-Danish) and validation (US only and Danish only) populations. Depending on trait (milk, fat, and protein yields and component percentages; productive life; somatic cell score; daughter pregnancy rate; 14 conformation traits; and net merit), the US reference population included 2,720 to 4,772 bulls and cows with traditional evaluations as of August 2009; the Danish reference population included 635 to 996 bulls. The US validation population included 442 to 712 bulls that gained a traditional evaluation between August 2009 and December 2013; the Danish validation population included 105 to 196 bulls with multitrait across-country evaluations on the US scale by December 2013. Genomic predicted transmitting abilities (GPTA) were calculated on the US scale using a selection index that combined direct genomic predictions with either traditional predicted transmitting ability for the reference population or traditional parent averages (PA) for the validation population and a traditional evaluation based only on genotyped animals. Reliability for GPTA was estimated from the reference population and August 2009 traditional PA and PA reliability. For prediction of December 2013 deregressed daughter deviations on the US scale, mean August 2009 GPTA reliability for Danish validation bulls was 0.10 higher when based on the combined US-Danish reference population than when the reference population included only Danish bulls; for US validation bulls, mean reliability increased by 0.02 when Danish bulls were added to the US reference population. Exchanging genotype data to increase the size of the reference population is an efficient approach to increasing the accuracy of genomic prediction when the reference population is small.


Asunto(s)
Bovinos/genética , Genómica , Animales , Bovinos/clasificación , Dinamarca , Femenino , Genotipo , Masculino , Fenotipo , Reproducibilidad de los Resultados , Estados Unidos
11.
J Dairy Sci ; 97(7): 4485-96, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24792791

RESUMEN

The main aim of this study was to compare accuracies of imputation and genomic predictions based on single and joint reference populations for Norwegian Red (NRF) and a composite breed (DFS) consisting of Danish Red, Finnish Ayrshire, and Swedish Red. The single nucleotide polymorphism (SNP) data for NRF consisted of 2 data sets: one including 25,000 markers (NRF25K) and the other including 50,000 markers (NRF50K). The NRF25K data set had 2,572 bulls, and the NRF50K data set had 1,128 bulls. Four hundred forty-two bulls were genotyped in both data sets (double-genotyped bulls). The DFS data set (DSF50K) included 50,000 markers of 13,472 individuals, of which around 4,700 were progeny-tested bulls. The NRF25K data set was imputed to 50,000 density using the software Beagle. The average error rate for the imputation of NRF25K decreased slightly from 0.023 to 0.021, and the correlation between observed and imputed genotypes changed from 0.935 to 0.936 when comparing the NRF50K reference and the NRF50K-DFS50K joint reference imputations. A genomic BLUP (GBLUP) model and a Bayesian 4-component mixture model were used to predict genomic breeding values for the NRF and DFS bulls based on the single and joint NRF and DFS reference populations. In the multiple population predictions, accuracies of genomic breeding values increased for the 3 production traits (milk, fat, and protein yields) for both NRF and DFS. Accuracies increased by 6 and 1.3 percentage points, on average, for the NRF and DFS bulls, respectively, using the GBLUP model, and by 9.3 and 1.3 percentage points, on average, using the Bayesian 4-component mixture model. However, accuracies for health or reproduction traits did not increase from the multiple population predictions. Among the 3 DFS populations, Swedish Red gained most in accuracies from the multiple population predictions, presumably because Swedish Red has a closer genetic relationship with NRF than Danish Red and Finnish Ayrshire. The Bayesian 4-component mixture model performed better than the GBLUP model for most production traits for both NRF and DFS, whereas no advantage was found for health or reproduction traits. In general, combining NRF and DFS reference populations was useful in genomic predictions for both the NRF and DFS bulls.


Asunto(s)
Cruzamiento , Bovinos/genética , Genómica/métodos , Animales , Bases de Datos Genéticas , Grasas de la Dieta/análisis , Femenino , Finlandia , Marcadores Genéticos , Genoma , Genotipo , Técnicas de Genotipaje , Lactancia , Masculino , Leche/metabolismo , Proteínas de la Leche/análisis , Modelos Genéticos , Noruega , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Reproducción , Suecia
12.
J Dairy Sci ; 97(2): 1117-27, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24342683

RESUMEN

The observed low accuracy of genomic selection in multibreed and admixed populations results from insufficient linkage disequilibrium between markers and trait loci. Failure to remove variation due to the population structure may also hamper the prediction accuracy. We verified if accounting for breed origin of alleles in the calculation of genomic relationships would improve the prediction accuracy in an admixed population. Individual breed proportions derived from the pedigree were used to estimate breed-wise allele frequencies (AF). Breed-wise and across-breed AF were estimated from the currently genotyped population and also in the base population. Genomic relationship matrices (G) were subsequently calculated using across-breed (GAB) and breed-wise (GBW) AF estimated in the currently genotyped and also in the base population. Unified relationship matrices were derived by combining different G with pedigree relationships in the evaluation of genomic estimated breeding values (GEBV) for genotyped and ungenotyped animals. The validation reliabilities and inflation of GEBV were assessed by a linear regression of deregressed breeding value (deregressed proofs) on GEBV, weighted by the reliability of deregressed proofs. The regression coefficients (b1) from GAB ranged from 0.76 for milk to 0.90 for protein. Corresponding b1 terms from GBW ranged from 0.72 to 0.88. The validation reliabilities across 4 evaluations with different G were generally 36, 40, and 46% for milk, protein, and fat, respectively. Unexpectedly, validation reliabilities were generally similar across different evaluations, irrespective of AF used to compute G. Thus, although accounting for the population structure in GBW tends to simplify the blending of genomic- and pedigree-based relationships, it appeared to have little effect on the validation reliabilities.


Asunto(s)
Bovinos/genética , Frecuencia de los Genes , Genoma/genética , Genómica/métodos , Leche , Modelos Genéticos , Animales , Cruzamiento , Genotipo , Desequilibrio de Ligamiento , Linaje , Fenotipo , Reproducibilidad de los Resultados
13.
J Dairy Sci ; 96(8): 5364-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23769355

RESUMEN

Different approaches of calculating genomic measures of relationship were explored and compared with pedigree relationships (A) within and across base breeds in a crossbreed population, using genotypes for 38,194 loci of 4,106 Nordic Red dairy cattle. Four genomic relationship matrices (G) were calculated using either observed allele frequencies (AF) across breeds or within-breed AF. The G matrices were compared separately when the AF were estimated in the observed and in the base population. Breedwise AF in the current and base population were estimated using linear regression models of individual genotypes on breed composition. Different G matrices were further used to predict direct estimated genomic values using a genomic BLUP model. Higher variability existed in the diagonal elements of G across breeds (standard deviation=0.06, on average) compared with A (0.01). The use of simple observed AF across base breeds to compute G increased coefficients for individuals in distantly related populations. Estimated breedwise AF reduced differences in coefficients similarly within and across populations. The variability of the current adjusted G matrix decreased from 0.055 to 0.035 when breedwise AF were estimated from the base breed population. The direct estimated genomic values and their validation reliabilities were, however, unaffected by AF used to compute G when estimated with a genomic BLUP model, due to inclusion of breed means in the model. In multibreed populations, G adjusted with breedwise AF from the founder population may provide more consistency among relationship coefficients between genotyped and ungenotyped individuals in an across-breed single-step evaluation.


Asunto(s)
Bovinos/genética , Frecuencia de los Genes/genética , Animales , Cruzamiento , Sitios Genéticos/genética , Genotipo , Modelos Genéticos , Linaje , Especificidad de la Especie
14.
Water Sci Technol ; 67(4): 854-62, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23306265

RESUMEN

The objective of this study has been to develop technologies that can reduce the content of active pharmaceutical ingredients (APIs) and bacteria from hospital wastewater. The results from the laboratory- and pilot-scale testings showed that efficient removal of the vast majority of APIs could be achieved by a membrane bioreactor (MBR) followed by ozone, ozone + hydrogen peroxide or powdered activated carbon (PAC). Chlorine dioxide (ClO(2)) was significantly less effective. MBR + PAC (450 mg/l) was the most efficient technology, while the most cost-efficient technology was MBR + ozone (156 mg O(3)/l applied over 20 min). With MBR an efficient removal of Escherichia coli and enterococci was measured, and no antibiotic resistant bacteria were detected in the effluent. With MBR + ozone and MBR + PAC also the measured effluent concentrations of APIs (e.g. ciprofloxacin, sulfamethoxazole and sulfamethizole) were below available predicted no-effect concentrations (PNEC) for the marine environment without dilution. Iodinated contrast media were also reduced significantly (80-99% for iohexol, iopromide and ioversol and 40-99% for amidotrizoateacid). A full-scale MBR treatment plant with ozone at a hospital with 900 beds is estimated to require an investment cost of €1.6 mill. and an operating cost of €1/m(3) of treated water.


Asunto(s)
Reactores Biológicos , Desinfección/métodos , Residuos Sanitarios , Preparaciones Farmacéuticas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Carbón Orgánico/química , Compuestos de Cloro/química , Peróxido de Hidrógeno/química , Óxidos/química , Ozono/química , Aguas Residuales
15.
J Anim Breed Genet ; 130(1): 10-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23317061

RESUMEN

The current study evaluates reliability of genomic predictions in selection candidates using multi-trait random regression model, which accounts for interactions between marker effects and breed of origin in the Nordic Red dairy cattle (RDC). The population structure of the RDC is admixed. Data consisted of individual animal breed proportions calculated from the full pedigree, deregressed proofs (DRP) of published estimated breeding values (EBV) for yield traits and genotypic data for 37,595 single nucleotide polymorphic markers. The analysed data included 3330 bulls in the reference population and 812 bulls that were used for validation. Direct genomic breeding values (DGV) were estimated using the model under study, which accounts for breed effects and also with GBLUP, which assume uniform population. Validation reliability was calculated as a coefficient of determination from weighted regression of DRP on DGV (rDRP,DGV 2), scaled by the mean reliability of DRP. Using the breed-specific model increased the reliability of DGV by 2 and 3% for milk and protein, respectively, when compared to homogeneous population GBLUP. The exception was for fat, where there was no gain in reliability. Estimated validation reliabilities were low for milk (0.32) and protein (0.32) and slightly higher (0.42) for fat.


Asunto(s)
Cruzamiento , Genética de Población , Análisis de Regresión , Selección Genética , Animales , Bovinos , Técnicas de Genotipaje , Ensayos Analíticos de Alto Rendimiento , Leche/fisiología , Modelos Teóricos , Linaje , Polimorfismo de Nucleótido Simple/genética
16.
J Dairy Sci ; 95(2): 909-17, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22281355

RESUMEN

This study investigated the accuracy of direct genomic breeding values (DGV) using a genomic BLUP model, genomic enhanced breeding values (GEBV) using a one-step blending approach, and GEBV using a selection index blending approach for 15 traits of Nordic Red Cattle. The data comprised 6,631 bulls of which 4,408 bulls were genotyped using Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA). To validate reliability of genomic predictions, about 20% of the youngest genotyped bulls were taken as test data set. Deregressed proofs (DRP) were used as response variables for genomic predictions. Reliabilities of genomic predictions in the validation analyses were measured as squared correlations between DRP and genomic predictions corrected for reliability of DRP, based on the bulls in the test data sets. A set of weighting (scaling) factors was used to construct the combined relationship matrix among genotyped and nongenotyped bulls for one-step blending, and to scale DGV and its expected reliability in the selection index blending. Weighting (scaling) factors had a small influence on reliabilities of GEBV, but a large influence on the variation of GEBV. Based on the validation analyses, averaged over the 15 traits, the reliability of DGV for bulls without daughter records was 11.0 percentage points higher than the reliability of conventional pedigree index. Further gain of 0.9 percentage points was achieved by combining information from conventional pedigree index using the selection index blending, and gain of 1.3 percentage points was achieved by combining information of genotyped and nongenotyped bulls simultaneously applying the one-step blending. These results indicate that genomic selection can greatly improve the accuracy of preselection for young bulls in Nordic Red population, and the one-step blending approach is a good alternative to predict GEBV in practical genetic evaluation program.


Asunto(s)
Cruzamiento/métodos , Bovinos/genética , Animales , Genómica/métodos , Genotipo , Masculino , Modelos Genéticos , Linaje , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
17.
Artículo en Inglés | MEDLINE | ID: mdl-23835797

RESUMEN

Nanoparticle encapsulation has been used as a means to manipulate the pharmacokinetic (PK) and safety profile of drugs in oncology. Using pegylated liposomal doxorubicin (PLD) vs. conventional doxorubicin as a model system, we developed and experimentally validated a multiscale computational model of liposomal drug delivery. We demonstrated that, for varying tumor transport properties, there is a regimen where liposomal and conventional doxorubicin deliver identical amounts of doxorubicin to tumor cell nuclei. In mice, typical tumor properties consistently favor improved delivery via liposomes relative to free drug. However, in humans, we predict that some tumors will have properties wherein liposomal delivery delivers the identical amount of drug to its target relative to dosing with free drug. The ability to identify tumor types and/or individual patient tumors with high degree of liposome deposition may be critical for optimizing the success of nanoparticle and liposomal anticancer therapeutics.CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e15; doi:10.1038/psp.2012.16; advance online publication 21 November 2012.

18.
J Anim Sci ; 88(3): 871-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19966172

RESUMEN

This study investigated the improvement in genetic evaluation of fertility traits by using production traits as secondary traits (MILK = 305-d milk yield, FAT = 305-d fat yield, and PROT = 305-d protein yield). Data including 471,742 records from first lactations of Denmark Holstein cows, covering the years of inseminations during first lactations from 1995 to 2004, were analyzed. Six fertility traits (i.e., interval in days from calving to first insemination, calving interval, days open, interval in days from first to last insemination, numbers of inseminations per conception, and nonreturn rate within 56 d after first service) were analyzed using single- and multiple-trait sire models including 1 or 3 production traits. Model stability was evaluated by correlation between EBV from 2 sub-data sets (DATA(A) and DATA(B)). Model predictive ability was assessed by the correlation between EBV from training data (DATA(A) or DATA(B)) and daughter performance (yield deviation, defined as average of daughter-records adjusted for nongenetic effects) from test data (DATA(B) or DATA(A)) in a cross-validation procedure, and correlation between EBV obtained from the whole data set (DATA(T)) and from a reduced data set (DATA(C1), which only contained the first crop daughters) for proven bulls. In addition, the superiority of the models was evaluated by expected reliability of EBV, calculated from the prediction error variance of EBV. Based on these criteria, the models combining milk production traits showed better model stability and predictive ability than single-trait models for all the fertility traits, except for nonreturn rate within 56 d after first service. The stability and predictive ability for the model including MILK or PROT were similar to the model including all 3 milk production traits and better than the model including FAT. In addition, it was found that single-trait models underestimated genetic trend of fertility traits. These results suggested that genetic evaluation of fertility traits would be improved using a multiple-trait model including MILK or PROT.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Leche/metabolismo , Animales , Bovinos/fisiología , Industria Lechera/métodos , Femenino , Fertilidad/fisiología , Variación Genética/genética , Genotipo , Lactancia , Masculino , Leche/fisiología , Herencia Multifactorial/genética , Paridad/genética , Fenotipo , Embarazo , Carácter Cuantitativo Heredable
19.
J Dairy Sci ; 92(8): 4063-71, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19620690

RESUMEN

Comparisons between a sire model, a sire-dam model, and an animal model were carried out to evaluate the ability of the models to predict breeding values of fertility traits, based on data including 471,742 records from the first lactation of Danish Holstein cows, covering insemination years from 1995 to 2004. The traits in the analysis were days from calving to first insemination, calving interval, days open, days from first to last insemination, number of inseminations per conception, and nonreturn rate within 56 d after first service. The correlations between sire estimated breeding value (EBV) from the animal model and the sire-dam model were close to 1 for all the traits, and those between the animal model and the sire model ranged from 0.95 to 0.97. Model ability to predict sire breeding value was assessed using 4 criteria: 1) the correlation between sire EBV from 2 data subsets (DATA(A) and DATA(B)); 2) the correlation between sire EBV from training data (DATA(A) or DATA(B)) and yield deviation from test data (DATA(B) or DATA(A)) in a cross-validation procedure; 3) the correlation between the EBV of proven bulls, obtained from the whole data set (DATA(T)) and from a reduced set of data (DATA(C1)) that contained only the first-crop daughters of sires; and 4) the reliability of sire EBV, calculated from the prediction error variance of EBV. All criteria used showed that the animal model was superior to the sire model for all the traits. The sire-dam model performed as well as the animal model and had a slightly smaller computational demand. Averaged over the 6 traits, the correlations between sire EBV from DATA(A) and DATA(B) were 0.61 (sire model) versus 0.64 (animal model), the correlations between EBV from DATA(T) and DATA(C1) for proven bulls were 0.59 versus 0.67, the correlations between EBV and yield deviation in the cross-validation were 0.21 versus 0.24, and the reliabilities of sire EBV were 0.42 versus 0.46. Model ability to predict cow breeding value was measured by the reliability of cow EBV, which increased from 0.21 using the sire model to 0.27 using the animal model. All the results suggest that the animal model, rather than the sire model, should be used for genetic evaluation of fertility traits.


Asunto(s)
Bovinos/fisiología , Fertilidad/genética , Modelos Genéticos , Animales , Cruzamiento , Bovinos/genética , Dinamarca , Femenino , Técnicas In Vitro , Reproducibilidad de los Resultados
20.
J Dairy Sci ; 88(12): 4434-40, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16291635

RESUMEN

The objectives of this study were to estimate the heritability of milk urea nitrogen (MUN) concentration and describe the genetic relationship between MUN and reproductive performance and between MUN and diseases in Holsteins. Dairy Records Management Systems (Raleigh, NC) provided lactation data. The Danish Agricultural Advisory Center provided breeding value estimates for diseases. Infrared (IR) and wet chemistry (WC) data were analyzed separately. Heritabilities and genetic correlations for 2 different measures of MUN and reproductive performance were estimated with an animal model using ASREML. Heritabilities for MUN were estimated using all lactations combined (lactations 1 through 5) and separately for first lactation and second lactation. Genetic correlations with reproduction and health were estimated separately for parities 1 and 2. Herd-test-day or herd-year-season along with age at calving and days in milk were included as fixed effects in all models. Heritability estimates for all lactations combined were 0.15 for WC MUN and 0.22 for IR MUN. Genetic correlations between WC MUN and 2 measures of reproductive performance, days to first service, and first service conception were not different from zero. In contrast, the genetic correlation between WC MUN and days open of 0.21 in first lactation and 0.41 in second lactation indicated that higher WC MUN values were associated with increased days open. Correlations among estimated breeding values for MUN and estimated breeding values for Danish diseases identified no significant relationships. Although the results of this study indicate that heritable variation for MUN exists, the inability to identify significant genetic relationships with several measures of disease or reproductive performance appears to limit the value of MUN in selection for disease resistance and improved reproduction.


Asunto(s)
Cruzamiento , Enfermedades de los Bovinos/genética , Leche/química , Nitrógeno/análisis , Reproducción/genética , Urea/análisis , Animales , Bovinos , Dinamarca , Femenino , Lactancia , Linaje , Fenotipo , Análisis de Regresión , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...