Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Med ; 30(5): 1349-1362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38724705

RESUMEN

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Asunto(s)
Colitis , Inhibidores de Puntos de Control Inmunológico , Mucosa Intestinal , Análisis de la Célula Individual , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Colitis/inducido químicamente , Colitis/inmunología , Colitis/genética , Colitis/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Femenino , Masculino , Perfilación de la Expresión Génica , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anciano , Transcriptoma , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Colon/patología , Colon/inmunología , Colon/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología
2.
Nat Immunol ; 25(4): 644-658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503922

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.


Asunto(s)
Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Quimiocinas/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
3.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393682

RESUMEN

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Asunto(s)
Complejo CD3 , Endopeptidasas , Proteínas Ligadas a GPI , Inmunoterapia Adoptiva , Mesotelina , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Adenocarcinoma/patología
4.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38105940

RESUMEN

Purpose: Dysregulation of viral-like repeat RNAs are a common feature across many malignancies that are linked with immunological response, but the characterization of these in hepatocellular carcinoma (HCC) is understudied. In this study, we performed RNA in situ hybridization (RNA-ISH) of different repeat RNAs, immunohistochemistry (IHC) for immune cell subpopulations, and spatial transcriptomics to understand the relationship of HCC repeat expression, immune response, and clinical outcomes. Experimental Design: RNA-ISH for LINE1, HERV-K, HERV-H, and HSATII repeats and IHC for T-cell, Treg, B-cell, macrophage, and immune checkpoint markers were performed on 43 resected HCC specimens. Spatial transcriptomics on tumor and vessel regions of interest was performed on 28 specimens from the same cohort. Results: High HERV-K and high LINE1 expression were both associated with worse overall survival. There was a positive correlation between LINE1 expression and FOXP3 T-regulatory cells (r = 0.51 p < 0.001) as well as expression of the TIM3 immune checkpoint (r = 0.34, p = 0.03). Spatial transcriptomic profiling of HERV-K high and LINE-1 high tumors identified elevated expression of multiple genes previously associated with epithelial mesenchymal transition, cellular proliferation, and worse overall prognosis in HCC including SSX1, MAGEC2, and SPINK1. Conclusion: Repeat RNAs may serve as useful prognostic biomarkers in HCC and may also serve as novel therapeutic targets. Additional study is needed to understand the mechanisms by which repeat RNAs impact HCC tumorigenesis.

5.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37790460

RESUMEN

Immune checkpoint inhibitors (ICIs) are widely used anti-cancer therapies that can cause morbid and potentially fatal immune-related adverse events (irAEs). ICI-related myocarditis (irMyocarditis) is uncommon but has the highest mortality of any irAE. The pathogenesis of irMyocarditis and its relationship to anti-tumor immunity remain poorly understood. We sought to define immune responses in heart, tumor, and blood during irMyocarditis and identify biomarkers of clinical severity by leveraging single-cell (sc)RNA-seq coupled with T cell receptor (TCR) sequencing, microscopy, and proteomics analysis of 28 irMyocarditis patients and 23 controls. Our analysis of 284,360 cells from heart and blood specimens identified cytotoxic T cells, inflammatory macrophages, conventional dendritic cells (cDCs), and fibroblasts enriched in irMyocarditis heart tissue. Additionally, potentially targetable, pro-inflammatory transcriptional programs were upregulated across multiple cell types. TCR clones enriched in heart and paired tumor tissue were largely non-overlapping, suggesting distinct T cell responses within these tissues. We also identify the presence of cardiac-expanded TCRs in a circulating, cycling CD8 T cell population as a novel peripheral biomarker of fatality. Collectively, these findings highlight critical biology driving irMyocarditis and putative biomarkers for therapeutic intervention.

6.
Cancer Discov ; 13(12): 2532-2547, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698949

RESUMEN

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE: The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 µL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Elementos de Nucleótido Esparcido Largo , Proteínas/genética , Biomarcadores de Tumor , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
7.
Blood ; 142(21): 1831-1844, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37699201

RESUMEN

Severe acute graft-versus-host disease (aGVHD) is associated with significant mortality and morbidity, especially in steroid-resistant (SR) cases. Spatial transcriptomic technology can elucidate tissue-based interactions in vivo and possibly identify predictors of treatment response. Tissue sections from 32 treatment-naïve patients with biopsy-confirmed lower gastrointestinal (GI) aGVHD were obtained. The GeoMx digital spatial profiler was used to capture transcriptome profiles of >18 000 genes from different foci of immune infiltrates, colonic epithelium, and vascular endothelium. Each tissue compartment sampled showed 2 distinct clusters that were analyzed for differential expression and spatially resolved correlation of gene signatures. Classic cell-mediated immunity signatures, normal differentiated epithelial cells, and inflamed vasculature dominated foci sampled from steroid-sensitive cases. In contrast, a neutrophil predominant noncanonical inflammation with regenerative epithelial cells and some indication of angiogenic endothelial response was overrepresented in areas from SR cases. Evaluation of potential prognostic biomarkers identified ubiquitin specific peptidase 17-like (USP17L) family of genes as being differentially expressed in immune cells from patients with worsened survival. In summary, we demonstrate distinct tissue niches with unique gene expression signatures within lower GI tissue from patients with aGVHD and provide evidence of a potential prognostic biomarker.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Transcriptoma , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/genética , Inmunidad Celular , Esteroides/uso terapéutico , Mucosa Intestinal , Enfermedad Aguda
8.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066412

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially-localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens, and found that they were associated with beneficial responses to PD-1-blockade. Immunity hubs were enriched for many interferon-stimulated genes, T cells in multiple differentiation states, and CXCL9/10/11 + macrophages that preferentially interact with CD8 T cells. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcomes, distinct from mature tertiary lymphoid structures, and enriched for stem-like TCF7+PD-1+ CD8 T cells and activated CCR7 + LAMP3 + dendritic cells, as well as chemokines that organize these cells. These results elucidate the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.

9.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35708912

RESUMEN

Aberrant expression of viral-like repeat elements is a common feature of epithelial cancers, and the substantial diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering independent of tissue origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that human satellite II (HSATII) satellite repeat expression was highly associated with epithelial-mesenchymal transition (EMT) and anticorrelated with IFN-response genes indicative of a more aggressive phenotype. SATII expression - and its correlation with EMT and anticorrelation with IFN-response genes - was also found in ovarian cancer RNA-Seq data and was associated with significantly shorter survival in a second independent cohort of patients with ovarian cancer. Repeat RNAs were enriched in tumor-derived extracellular vesicles capable of stimulating monocyte-derived macrophages, demonstrating a mechanism that alters the tumor microenvironment with these viral-like sequences. Targeting of HSATII with antisense locked nucleic acids stimulated IFN response and induced MHC I expression in ovarian cancer cell lines, highlighting a potential strategy of modulating the repeatome to reestablish antitumor cell immune surveillance.


Asunto(s)
Neoplasias Ováricas , Satélite de ARN , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/genética , Fenotipo , ARN , Microambiente Tumoral/genética
10.
Cancer Discov ; 12(6): 1462-1481, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35320348

RESUMEN

Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE: Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa Dirigida por ARN , Animales , Antivirales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ADN , Humanos , Interferones/metabolismo , Lamivudine , Estadios del Ciclo de Vida , ARN , ADN Polimerasa Dirigida por ARN/metabolismo , Proteína p53 Supresora de Tumor/genética
11.
Cancer Res ; 82(6): 1084-1097, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35045985

RESUMEN

Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE: Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.


Asunto(s)
Neoplasias de la Próstata , Proteómica , Animales , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral
12.
J Cell Biol ; 221(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35019938

RESUMEN

RB restricts G1/S progression by inhibiting E2F. Here, we show that sustained expression of active RB, and prolonged G1 arrest, causes visible changes in chromosome architecture that are not directly associated with E2F inhibition. Using FISH probes against two euchromatin RB-associated regions, two heterochromatin domains that lack RB-bound loci, and two whole-chromosome probes, we found that constitutively active RB (ΔCDK-RB) promoted a more diffuse, dispersed, and scattered chromatin organization. These changes were RB dependent, were driven by specific isoforms of monophosphorylated RB, and required known RB-associated activities. ΔCDK-RB altered physical interactions between RB-bound genomic loci, but the RB-induced changes in chromosome architecture were unaffected by dominant-negative DP1. The RB-induced changes appeared to be widespread and influenced chromosome localization within nuclei. Gene expression profiles revealed that the dispersion phenotype was associated with an increased autophagy response. We infer that, after cell cycle arrest, RB acts through noncanonical mechanisms to significantly change nuclear organization, and this reorganization correlates with transitions in cellular state.


Asunto(s)
Núcleo Celular/metabolismo , Proteína de Retinoblastoma/metabolismo , Autofagia , Puntos de Control del Ciclo Celular , Línea Celular , Cromatina/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Mutación/genética , Fenotipo , Unión Proteica , Proteína de Retinoblastoma/genética
13.
Oncogene ; 40(47): 6527-6539, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34650218

RESUMEN

MYC is a prolific proto-oncogene driving the malignant behaviors of numerous common cancers, yet potent and selective cell-permeable inhibitors of MYC remain elusive. In order to ultimately realize the goal of therapeutic MYC inhibition in cancer, we have initiated discovery chemistry efforts aimed at inhibiting MYC translation. Here we describe a series of conformationally stabilized synthetic antisense oligonucleotides designed to target MYC mRNA (MYCASOs). To support bioactivity, we designed and synthesized this focused library of MYCASOs incorporating locked nucleic acid (LNA) bases at the 5'- and 3'-ends, a phosphorothioate backbone, and internal DNA bases. Treatment of MYC-expressing cancer cells with MYCASOs leads to a potent decrease in MYC mRNA and protein levels. Cleaved MYC mRNA in MYCASO-treated cells is detected with a sensitive 5' Rapid Amplification of cDNA Ends (RACE) assay. MYCASO treatment of cancer cell lines leads to significant inhibition of cellular proliferation while specifically perturbing MYC-driven gene expression signatures. In a MYC-induced model of hepatocellular carcinoma, MYCASO treatment decreases MYC protein levels within tumors, decreases tumor burden, and improves overall survival. MYCASOs represent a new chemical tool for in vitro and in vivo modulation of MYC activity, and promising therapeutic agents for MYC-addicted tumors.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Estabilidad del ARN , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proliferación Celular , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624217

RESUMEN

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas Inmediatas-Precoces/metabolismo , Mitosis , Células Neoplásicas Circulantes/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Regiones no Traducidas 3' , Animales , Antineoplásicos/farmacología , Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina , Femenino , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/genética , Indoles/farmacología , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Mitosis/efectos de los fármacos , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fenilacetatos/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estructuras R-Loop , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Elongación de la Transcripción Genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Cancer Discov ; 11(3): 678-695, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33203734

RESUMEN

Circulating tumor cells (CTC) are shed by cancer into the bloodstream, where a viable subset overcomes oxidative stress to initiate metastasis. We show that single CTCs from patients with melanoma coordinately upregulate lipogenesis and iron homeostasis pathways. These are correlated with both intrinsic and acquired resistance to BRAF inhibitors across clonal cultures of BRAF-mutant CTCs. The lipogenesis regulator SREBP2 directly induces transcription of the iron carrier Transferrin (TF), reducing intracellular iron pools, reactive oxygen species, and lipid peroxidation, thereby conferring resistance to inducers of ferroptosis. Knockdown of endogenous TF impairs tumor formation by melanoma CTCs, and their tumorigenic defects are partially rescued by the lipophilic antioxidants ferrostatin-1 and vitamin E. In a prospective melanoma cohort, presence of CTCs with high lipogenic and iron metabolic RNA signatures is correlated with adverse clinical outcome, irrespective of treatment regimen. Thus, SREBP2-driven iron homeostatic pathways contribute to cancer progression, drug resistance, and metastasis. SIGNIFICANCE: Through single-cell analysis of primary and cultured melanoma CTCs, we have uncovered intrinsic cancer cell heterogeneity within lipogenic and iron homeostatic pathways that modulates resistance to BRAF inhibitors and to ferroptosis inducers. Activation of these pathways within CTCs is correlated with adverse clinical outcome, pointing to therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 521.


Asunto(s)
Ferroptosis/genética , Lipogénesis/genética , Melanoma/genética , Melanoma/metabolismo , Células Neoplásicas Circulantes/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Transferrina/metabolismo , Biomarcadores de Tumor , Células Cultivadas , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/patología , Mutación , Células Neoplásicas Circulantes/patología , Transducción de Señal , Análisis de la Célula Individual , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
16.
Nat Commun ; 11(1): 6319, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298930

RESUMEN

The relationship of SARS-CoV-2 pulmonary infection and severity of disease is not fully understood. Here we show analysis of autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter-patient and intra-patient heterogeneity of pulmonary virus infection. There is a spectrum of high and low virus cases associated with duration of disease. High viral cases have high activation of interferon pathway genes and a predominant M1-like macrophage infiltrate. Low viral cases are more heterogeneous likely reflecting inherent patient differences in the evolution of host response, but there is consistent indication of pulmonary epithelial cell recovery based on napsin A immunohistochemistry and RNA expression of surfactant and mucin genes. Using a digital spatial profiling platform, we find the virus corresponds to distinct spatial expression of interferon response genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Interacciones Microbiota-Huesped , Interferones/metabolismo , Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Ácido Aspártico Endopeptidasas/metabolismo , Autopsia , COVID-19/inmunología , COVID-19/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Humanos , Inmunidad , Inmunohistoquímica , Hibridación in Situ , Interferones/genética , Pulmón/patología , Pulmón/virología , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Mucinas/genética , Mucinas/metabolismo , Tensoactivos/metabolismo , Transcriptoma , Carga Viral
17.
Nat Commun ; 11(1): 6311, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298946

RESUMEN

Blood-borne metastasis to the brain is a major complication of breast cancer, but cellular pathways that enable cancer cells to selectively grow in the brain microenvironment are poorly understood. We find that cultured circulating tumor cells (CTCs), derived from blood samples of women with advanced breast cancer and directly inoculated into the mouse frontal lobe, exhibit striking differences in proliferative potential in the brain. Derivative cell lines generated by serial intracranial injections acquire selectively increased proliferative competency in the brain, with reduced orthotopic tumor growth. Increased Hypoxia Inducible Factor 1A (HIF1A)-associated signaling correlates with enhanced proliferation in the brain, and shRNA-mediated suppression of HIF1A or drug inhibition of HIF-associated glycolytic pathways selectively impairs brain tumor growth while minimally impacting mammary tumor growth. In clinical specimens, brain metastases have elevated HIF1A protein expression, compared with matched primary breast tumors, and in patients with brain metastases, hypoxic signaling within CTCs predicts decreased overall survival. The selective activation of hypoxic signaling by metastatic breast cancer in the brain may have therapeutic implications.


Asunto(s)
Neoplasias Encefálicas/secundario , Encéfalo/patología , Neoplasias de la Mama/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animales , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/mortalidad , Neoplasias de la Mama/sangre , Neoplasias de la Mama/mortalidad , Hipoxia de la Célula , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Glándulas Mamarias Animales/patología , Metabolómica , Ratones , ARN Interferente Pequeño/metabolismo , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esferoides Celulares , Técnicas Estereotáxicas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Oncoimmunology ; 9(1): 1806662, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32923170

RESUMEN

The metabolic gene isocitrate dehydrogenase 1 (IDH1) is commonly mutated in lower grade glioma (LGG) and secondary glioblastoma (GBM). Regulatory T cells (Tregs) play a significant role in the suppression of antitumor immunity in human glioma. Given the importance of Tregs in the overall framework of designing immune-based therapies, a better understanding on their association with IDH mutational status remains of critical clinical importance. Using multispectral imaging analysis, we compared the incidence of Tregs in IDH-mutant and IDH wild-type glioma from patient tumor samples of LGG. An orthotopic IDH-mutant murine model was generated to evaluate the role of mutant IDH on Treg infiltration by immunohistochemistry. When compared to IDH wild-type controls, Tregs are disproportionally underrepresented in mutant disease, even when taken as a proportion of all infiltrating T cells. Our findings suggest that therapeutic agents targeting Tregs may be more appropriate in modulating the immune response to wild-type disease.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Ratones , Mutación , Linfocitos T Reguladores
19.
medRxiv ; 2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32766600

RESUMEN

The relationship of SARS-CoV-2 lung infection and severity of pulmonary disease is not fully understood. We analyzed autopsy specimens from 24 patients who succumbed to SARS-CoV-2 infection using a combination of different RNA and protein analytical platforms to characterize inter- and intra- patient heterogeneity of pulmonary virus infection. There was a spectrum of high and low virus cases that was associated with duration of disease and activation of interferon pathway genes. Using a digital spatial profiling platform, the virus corresponded to distinct spatial expression of interferon response genes and immune checkpoint genes demonstrating the intra-pulmonary heterogeneity of SARS-CoV-2 infection.

20.
Lab Chip ; 20(3): 558-567, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31934715

RESUMEN

Circulating tumor cells (CTCs) are extremely rare in the blood, yet they account for metastasis. Notably, it was reported that CTC clusters (CTCCs) can be 50-100 times more metastatic than single CTCs, making them particularly salient as a liquid biopsy target. Yet they can split apart and are even rarer, complicating their recovery. Isolation by filtration risks loss when clusters squeeze through filter pores over time, and release of captured clusters can be difficult. Deterministic lateral displacement is continuous but requires channels not much larger than clusters, leading to clogging. Spiral inertial focusing requires large blood dilution factors (or lysis). Here, we report a microfluidic chip that continuously isolates untouched CTC clusters from large volumes of minimally (or undiluted) whole blood. An array of 100 µm-wide channels first concentrates clusters in the blood, and then a similar array transfers them into a small volume of buffer. The microscope-slide-sized PDMS device isolates individually-spiked CTC clusters from >30 mL per hour of whole blood with 80% efficiency into enumeration (fluorescence imaging), and on-chip yield approaches 100% (high speed video). Median blood cell removal (in base-10 logs) is 4.2 for leukocytes, 5.5 for red blood cells, and 4.9 for platelets, leaving less than 0.01% of leukocytes alongside CTC clusters in the product. We also demonstrate that cluster configurations are preserved. Gentle, high throughput concentration and separation of circulating tumor cell clusters from large blood volumes will enable cluster-specific diagnostics and speed the generation of patient-specific CTC cluster lines.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes/patología , Voluntarios Sanos , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...