Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hematol., Transfus. Cell Ther. (Impr.) ; 45(3): 324-329, July-Sept. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1514168

RESUMEN

ABSTRACT Introduction: Chronic graft-versus-host disease (cGvHD) not only remains the main cause of late mortality after allogeneic hematopoietic cell transplant, but also has the capacity of causing severe organ impairment in those who survive. The Notch, a highly conserved ligand-receptor pathway, is involved in many immunological processes, including inflammatory and regulatory responses. Recently, mouse models have shown that the blockage of canonical Notch signaling prevents GvHD. Objective and Method: Due to the lack of data on the Notch pathway in human chronic GvHD, we sought to study the expression of NOTCH components in primary samples of patients who received allo-HCT and presented active cGvHD or a long-term clinical tolerance to cGvHD. Results: Our results showed a significantly lower expression of NOTCH components in both groups that received allo-HCT, independently of their cGvHD status, when compared to healthy controls. Conclusion: Moreover, there were no differences in gene expression levels between the active cGvHD and clinically tolerant groups. To our knowledge, this is one of the first studies performed in human primary samples and our data indicate that much remains to be learned regarding NOTCH signaling as a new regulator of GvHD.

2.
Hematol Transfus Cell Ther ; 45(3): 324-329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35840487

RESUMEN

INTRODUCTION: Chronic graft-versus-host disease (cGvHD) not only remains the main cause of late mortality after allogeneic hematopoietic cell transplant, but also has the capacity of causing severe organ impairment in those who survive. The Notch, a highly conserved ligand-receptor pathway, is involved in many immunological processes, including inflammatory and regulatory responses. Recently, mouse models have shown that the blockage of canonical Notch signaling prevents GvHD. OBJECTIVE AND METHOD: Due to the lack of data on the Notch pathway in human chronic GvHD, we sought to study the expression of NOTCH components in primary samples of patients who received allo-HCT and presented active cGvHD or a long-term clinical tolerance to cGvHD. RESULTS: Our results showed a significantly lower expression of NOTCH components in both groups that received allo-HCT, independently of their cGvHD status, when compared to healthy controls. CONCLUSION: Moreover, there were no differences in gene expression levels between the active cGvHD and clinically tolerant groups. To our knowledge, this is one of the first studies performed in human primary samples and our data indicate that much remains to be learned regarding NOTCH signaling as a new regulator of GvHD.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36503996

RESUMEN

INTRODUCTION: Dendritic cell (DC) vaccines have demonstrated good efficacy in preventing relapse and in increasing survival of patients affected by a variety of both solid and hematological tumors. Most protocols used to generate these cells involve the automated separation of peripheral blood monocytes from patients. This approach requires specialized equipment, which elevates the cost of this type of therapy, potentially limiting the widespread access to patients. METHOD: In this study, we compare the yield and quality of dendritic cells generated from monocytes and isolated by an automated method or by manual methods using gradient centrifugation. RESULTS: The results demonstrate the equivalence of the 3 methods in relation to the yield and final quality of the product, however with considerable differences between the costs of these procedures. In addition, this study also demonstrates the feasibility of the antigenic pulse with autologous tumor cell lysates, constituting a source of antigens, not only easily obtained and manipulated, but also specific to the patient's tumor. CONCLUSION: These findings may have important implications for emerging centers interested in using this medical approach and potentially increase the access of a greater number of patients to this therapeutic option.

4.
Transpl Immunol ; 70: 101514, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922025

RESUMEN

Chronic graft-versus-host disease (cGvHD), an immunological complication of allogeneic cell transplantation, is the principal cause of non-relapse mortality and morbidity. Even though advances have been made in understanding the pathophysiology of this disorder, many questions remain. We sought to evaluate gene expression of transforming growth factor ß (TGF-ß) pathway components, through quantitative RT-PCR and PCR array, in patients with cGvHD with different disease activity. We observed an upregulation of SMAD3, BMP2, CDKN1A, IL6, and TGF-ß2 genes in the clinical tolerance group, which had never developed cGvHD, or which had been withdrawn from all immunosuppressive treatments (IST) for at least 1 year. In addition, SMAD5 gene upregulation was observed in cGvHD patients undergoing IST, and ordinal regression showed a correlation between SMAD5 expression and disease severity. Our data support the evidence of the important role of TGF-ß effects in the pathological process of cGvHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Enfermedad Crónica , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunosupresores , Factor de Crecimiento Transformador beta/genética , Trasplante Homólogo/efectos adversos
5.
EJHaem ; 2(4): 818-822, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35845184

RESUMEN

Loss of endoplasmic reticulum (ER) homeostasis leads to ER stress, thus prolonged activation can lead to apoptosis. Herein, artesunate (ART) induced ER stress in leukaemia cells, resulting in eIF2α phosphorylation, activation of transcription factor 4, subsequent CHOP upregulation and XBP1 splicing. Furthermore, in vitro cyclin/CDKs reduction induced G1-phase arrest. An in vivo xenograft model showed a consistent pattern of ART in reducing tumour burden, supporting roles in the UPR pathway, which we speculate could lead to apoptosis by NOXA activation. Moreover, ART were capable of increasing the survival of mice. Taken together, our data indicate that ART may represent an interesting weapon to fight leukaemia.

6.
Front Oncol ; 10: 569668, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330042

RESUMEN

NR4A3 is a key tumor suppressor in myeloid malignancy, mice lacking both NR4A1 and family member NR4A3 rapidly develop lethal acute myeloid leukemia (AML). We identified a long non-coding transcript in the NR4A3 locus and pursued the characterization of this anonymous transcript and the study of its role in leukemogenesis. We characterized this novel long non-coding transcript as a sense polyadenylated transcript. Bone marrow cells from AML patients expressed significantly reduced levels of lncNR4A3 compared to healthy controls (controls = 15, MDS= 20, p=0.05., AML= 21, p<0.01). Expression of NR4A3, as previously reported, was also significantly reduced in AML. Interestingly, the expression of both coding and non-coding transcripts was highly correlated (Pearson R = 0.3771, P<0.01). Transient over-expression of LncNR4A3 by nucleofection led to an increase in the RNA and protein level of NR4A3, reduction of proliferation in myeloid cell lines K-562 and KG1 (n=3 and 2 respectively, p<0.05) and reduced colony formation capacity in primary leukemic cells. A mass spectrometry-based quantitative proteomics approach was used to identify proteins dysregulated after lncNR4A3 over-expression in K-562. Enrichment analysis showed that the altered proteins are biologically connected (n=4, p<0.001) and functionally associated to RNA binding, transcription elongation, and splicing. Remarkably, we were able to validate the most significant results by WB. We showed that this novel transcript, lncNR4A3 regulates NR4A3 and we hypothesize this regulatory mechanism is mediated by the modulation of the RNA processing machinery.

7.
J Cell Mol Med ; 23(4): 3021-3025, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770626

RESUMEN

LEF1 antisense RNA 1 (LEF1-AS1) is an antisense long non-coding RNA encoded in the lymphoid enhancer-binding factor 1 (LEF1) locus. LEF1-AS1 is a conserved transcript dysregulated in hematopoiesis. This study aimed to functionally characterize the role of this transcript in myeloid malignancy and explore a possible regulatory effect of LEF1-AS1 upon LEF1. We show that LEF1-AS1 is highly expressed in normal hematopoietic stem cells but barely detectable in myeloid malignant cell lines. Additionally, bone marrow cells from myelodysplastic syndrome (n=12) and acute myeloid malignancy patients (n=28) expressed significantly reduced levels of LEF1-AS1 compared to healthy controls (n=15). Artificial LEF1-AS1 over-expression inhibited proliferation in HL60 and led to an upregulation of tumor suppressors p21 and p27, and reduced ERK1/2 activation. Unexpectedly, no underlying modulation of LEF1 was detected. Ectopic expression of LEF1-AS1 also inhibited proliferation in HELA, a cell line lacking endogenous expression of LEF1, supporting a LEF1-independent mechanism. Additionally, transient over-expression of LEF1-AS1 in AML patient cells also led to reduced proliferation and colony formation capacity. We used a mass spectrometry-based proteomics approach. Proteomic quantification identified the modulation of an important metabolic regulator, Fumarase, and concomitant accumulation of the metabolite fumarate.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/patología , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Síndromes Mielodisplásicos/patología , ARN Largo no Codificante/genética , Estudios de Casos y Controles , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
8.
Front Oncol ; 9: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761268

RESUMEN

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell-based disorders characterized by ineffective hematopoiesis, increased genomic instability and a tendency to progress toward acute myeloid leukemia (AML). MDS and AML cells present genetic and epigenetic abnormalities and, due to the heterogeneity of these molecular alterations, the current treatment options remain unsatisfactory. Hypomethylating agents (HMA), especially azacitidine, are the mainstay of treatment for high-risk MDS patients and HMA are used in treating elderly AML. The aim of this study was to investigate the potential role of the epigenetic reader bromodomain-containing protein-4 (BRD4) in MDS and AML patients. We identified the upregulation of the short variant BRD4 in MDS and AML patients, which was associated with a worse outcome of MDS. Furthermore, the inhibition of BRD4 in vitro with JQ1 or shRNA induced leukemia cell apoptosis, especially when combined to azacitidine, and triggered the activation of the DNA damage response pathway. JQ1 and AZD6738 (a specific ATR inhibitor) also synergized to induce apoptosis in leukemia cells. Our results indicate that the BRD4-dependent transcriptional program is a defective pathway in MDS and AML pathogenesis and its inhibition induces apoptosis of leukemia cells, which is enhanced in combination with HMA or an ATR inhibitor.

9.
Stem Cell Res ; 22: 70-78, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28636974

RESUMEN

Cross-talk between hematopoietic stem cells (HSCs) and bone marrow stromal cells (BMSCs) is essential for HSCs regulation and leukemogenesis. Studying bone marrow of myelodysplasia patients, a pre-leukemic condition, we found mRNA overexpression of vascular endothelial growth factor A (VEGFA) in CD34+ HSCs and semaphorin 3A (SEMA3A) in BMSCs. To better understand the role of VEGFA and SEMA3A in leukemogenesis, we recruited 30 myelodysplastic syndrome (MDS) patients, 29 acute myeloid leukemia (6 secondary to MDS) patients and 12 controls. We found higher VEGFA expression in de novo AML patients (without prior MDS) group (p=0.0073) and higher SEMA3A expression in all BMSCs patient's samples compared to control group. We then overexpressed VEGFA in an acute myelogenous leukemia cell line, KG1 cells, and in normal CD34+ cells. This overexpression increased KG1 (p=0.045) and CD34+ cell (p=0.042) viability and KG1 (p=0.042) and CD34+ cell (p=0.047) proliferation. Moreover, KG1 and CD34+ cells overexpressing VEGFA also had increased proliferation when co-cultured with human marrow stromal HS5 cells (p=0.045 and p=0.02, respectively). However, co-culture of these transformed cells with HS5 cells overexpressing SEMA3A reduced KG1 (p=0.004) and CD34+ (p=0.009) proliferation. Co-culture of KG1 transformed cells with HS27 cells overexpressing SEMA3A reduced KG1 proliferation as well (p=0.01). To investigate whether the dominant SEMA3A effect over VEGFA could be due to competition for neuropilin1 receptor (NRP1), we performed immunoprecipitation with anti-NRP1 antibody of cell extracts of co-cultured KG1 and HS5 cells, induced or not by VEGFA and SEMA3A recombinant proteins. Results showed a preferential association of NRP1 with SEMA3A, suggesting that SEMA3A can partially reverse the effects caused by the VEGFA preventing its binding with the NRP1 receptor. Since both hematopoietic cells, leukemic and normal, showed similar behavior, we suppose that the attempt to reversion of VEGF effects by SEMA3A is a homeostatic phenomenon in the hematopoietic niche. Finally, we conclude that VEGFA overexpression confers AML cell advantages and SEMA3A may partially reverse this effect; thus, SEMA3A protein combined with VEGFA inhibitors could be beneficial for AML treatment.


Asunto(s)
Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Células de la Médula Ósea , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/patología , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transfección , Factor A de Crecimiento Endotelial Vascular/genética
11.
Diagn Pathol ; 11: 28, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26984174

RESUMEN

BACKGROUND: New sequencing technologies have enabled the identification of mutations in Ten-eleven-translocation 2 (TET2), an enzyme that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5-hmC) in myeloid neoplasms. We have recently identified reduced TET2 mRNA expression in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), which is associated with a poor overall survival in MDS. We herein aimed to investigate TET2 mutations and their impact on TET2 expression in a cohort of patients with myeloid neoplasms, including MDS and AML patients. FINDINGS: TET2 mutations were observed in 8 out of 19 patients (42 %) with myeloid neoplasms. The TET2 expression profile was similar between in wild type and in TET2 mutated patients. CONCLUSION: Our results suggest that TET2 expression is reduced in MDS/AML patients, independently of mutational status.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Adulto , Anciano , Biomarcadores de Tumor/análisis , Estudios de Casos y Controles , Análisis Mutacional de ADN , Proteínas de Unión al ADN/análisis , Dioxigenasas , Regulación hacia Abajo , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/enzimología , Síndromes Mielodisplásicos/patología , Proteínas Proto-Oncogénicas/análisis
12.
Biochim Biophys Acta ; 1833(5): 1269-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23419774

RESUMEN

The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. CATS is highly expressed in cancer cell lines in a cell cycle dependent manner and is induced by mitogens. CATS is considered a marker for proliferation, known to control the metaphase-to-anaphase transition during the cell division. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) protein as a CATS interacting partner. The interaction between CATS and KIS was confirmed by GST pull-down, co-immunoprecipitation and co-localization experiments. Using kinase assay we showed that CATS is a substrate of KIS and mapped the phosphorylation site to CATS serine 131 (S131). Protein expression analysis revealed that KIS levels changed in a cell cycle-dependent manner and in the opposite direction to CATS levels. In a reporter gene assay KIS was able to enhance the transcriptional repressor activity of CATS, independent of CATS phophorylation at S131. Moreover, we showed that CATS and KIS antagonize the transactivation capacity of CALM/AF10.In summary, our results show that CATS interacts with and is a substrate for KIS, suggesting that KIS regulates CATS function.


Asunto(s)
Proteínas Portadoras , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Fusión Oncogénica , Proteínas Serina-Treonina Quinasas , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...