Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 367(1889): 607-15, 2009 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19019783

RESUMEN

It is possible to make a consistent story for the origin of Titan's atmosphere starting with the birth of Titan in the Saturn subnebula. If we use comet nuclei as a model, Titan's nitrogen and methane could have easily been delivered by the ice that makes up approximately 50 per cent of its mass. If Titan's atmospheric hydrogen is derived from that ice, it is possible that Titan and comet nuclei are in fact made of the same protosolar ice. The noble gas abundances are consistent with relative abundances found in the atmospheres of Mars and Earth, the Sun, and the meteorites.

2.
Rev Sci Instrum ; 78(6): 065109, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17614640

RESUMEN

A microfabricated silicon mass spectrometer inlet leak has been designed, fabricated, and tested. This leak achieves a much lower conductance in a smaller volume than is possible with commonly available metal or glass capillary tubing. It will also be shown that it is possible to integrate significant additional functionality, such as inlet heaters and valves, into a silicon microleak with very little additional mass. The fabricated leak is compatible with high temperature (up to 500 degrees C) and high pressure (up to 100 bars) conditions, as would be encountered on a Venus atmospheric probe. These leaks behave in reasonable agreement with their theoretically calculated conductance, although this differs between devices and from the predicted value by as much as a factor of 2. This variation is believed to be the result of nonuniformity in the silicon etching process which is characterized in this work. Future versions of this device can compensate for characterized process variations in order to produce devices in closer agreement with designed conductance values. The integration of an inlet heater into the leak device has also been demonstrated in this work.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Análisis de Inyección de Flujo/instrumentación , Gases/análisis , Espectrometría de Masas/instrumentación , Planetas , Silicio/química , Vuelo Espacial/instrumentación , Monitoreo del Ambiente/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Inyección de Flujo/métodos , Espectrometría de Masas/métodos , Miniaturización , Porosidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Vuelo Espacial/métodos
3.
Nature ; 438(7069): 796-9, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16319825

RESUMEN

Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.


Asunto(s)
Medio Ambiente Extraterrestre/química , Compuestos Orgánicos/análisis , Saturno , Aerosoles/química , Amoníaco/análisis , Atmósfera/química , Carbono/análisis , Cromatografía de Gases y Espectrometría de Masas , Gases/análisis , Gases/química , Calor , Cianuro de Hidrógeno/análisis , Nitrógeno/análisis
4.
Nature ; 438(7069): 779-84, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16319830

RESUMEN

Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre/química , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Vuelo Espacial , Argón/análisis , Carbono/análisis , Carbono/química , Isótopos/análisis , Metano/análisis , Metano/química , Nitrógeno/análisis , Nitrógeno/química , Vuelo Espacial/instrumentación
5.
Science ; 307(5713): 1260-2, 2005 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15731442

RESUMEN

Ions were detected in the vicinity of Saturn's A ring by the Ion and Neutral Mass Spectrometer (INMS) instrument onboard the Cassini Orbiter during the spacecraft's passage over the rings. The INMS saw signatures of molecular and atomic oxygen ions and of protons, thus demonstrating the existence of an ionosphere associated with the A ring. A likely explanation for these ions is photoionization by solar ultraviolet radiation of neutral O2 molecules associated with a tenuous ring atmosphere. INMS neutral measurements made during the ring encounter are dominated by a background signal.


Asunto(s)
Oxígeno , Saturno , Atmósfera , Medio Ambiente Extraterrestre , Hielo , Iones , Espectrometría de Masas , Protones , Nave Espacial
6.
Nature ; 402(6759): 269-70, 1999 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-10580497

RESUMEN

The four giant planets in the Solar System have abundances of 'metals' (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.


Asunto(s)
Litio/análisis , Sistema Solar , Frío , Medio Ambiente Extraterrestre
7.
Planet Space Sci ; 47(10-11): 1243-62, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-11543193

RESUMEN

We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.


Asunto(s)
Atmósfera/química , Evolución Planetaria , Júpiter , Modelos Químicos , Saturno , Amoníaco/análisis , Amoníaco/química , Astronomía/instrumentación , Atmósfera/análisis , Elementos Químicos , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/química , Espectrometría de Masas/instrumentación , Microondas , Fotoquímica , Nave Espacial/instrumentación , Agua
8.
Adv Space Res ; 21(11): 1455-61, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-11541457

RESUMEN

The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre , Gases/análisis , Júpiter , Vuelo Espacial/instrumentación , Atmósfera/análisis , Presión Atmosférica , Helio/análisis , Hidrocarburos/análisis , Hidrógeno/análisis , Espectrometría de Masas , Gases Nobles/análisis , Nave Espacial/instrumentación
9.
J Geophys Res ; 103(E10): 22831-45, 1998 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-11543372

RESUMEN

The Galileo probe mass spectrometer determined the composition of the Jovian atmosphere for species with masses between 2 and 150 amu from 0.5 to 21.1 bars. This paper presents the results of analysis of some of the constituents detected: H2, He, Ne, Ar, Kr, Xe, CH4, NH3, H2O, H2S, C2 and C3 nonmethane hydrocarbons, and possibly PH3 and Cl. 4He/H2 in the Jovian atmosphere was measured to be 0.157 +/- 0.030. 13C/C12 was found to be 0.0108 +/- 0.0005, and D/H and 3He/4He were measured. Ne was depleted, < or = 0.13 times solar, Ar < or = 1.7 solar, Kr < or = 5 solar, and Xe < or = 5 solar. CH4 has a constant mixing ratio of (2.1 +/- 0.4) x 10(-3) (12C, 2.9 solar), where the mixing ratio is relative to H2. Upper limits to the H2O mixing ratio rose from 8 x 10(-7) at pressures <3.8 bars to (5.6 +/- 2.5) x 10(-5) (16O, 0.033 +/- 0.015 solar) at 11.7 bars and, provisionally, about an order of magnitude larger at 18.7 bars. The mixing ratio of H2S was <10(-6) at pressures less than 3.8 bars but rose from about 0.7 x 10(-5) at 8.7 bars to about 7.7 x 10(-5) (32S, 2.5 solar) above 15 bars. Only very large upper limits to the NH3 mixing ratio have been set at present. If PH3 and Cl were present, their mixing ratios also increased with pressure. Species were detected at mass peaks appropriate for C2 and C3 hydrocarbons. It is not yet clear which of these were atmospheric constituents and which were instrumentally generated. These measurements imply (1) fractionation of 4He, (2) a local, altitude-dependent depletion of condensables, probably because the probe entered the descending arm of a circulation cell, (3) that icy planetesimals made significant contributions to the volatile inventory, and (4) a moderate decrease in D/H but no detectable change in (D + 3He)/H in this part of the galaxy during the past 4.6 Gyr.


Asunto(s)
Atmósfera/química , Júpiter , Vuelo Espacial/instrumentación , Calibración , Carbono/análisis , Medio Ambiente Extraterrestre , Gases/análisis , Helio/análisis , Hidrocarburos/análisis , Hidrógeno/análisis , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Gases Nobles/análisis , Nave Espacial/instrumentación
10.
Science ; 272(5263): 846-9, 1996 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-8629016

RESUMEN

The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.


Asunto(s)
Atmósfera , Medio Ambiente Extraterrestre , Júpiter , Agua/análisis , Amoníaco/análisis , Carbono/análisis , Helio/análisis , Hidrógeno/análisis , Espectrometría de Masas , Nitrógeno/análisis , Gases Nobles/análisis , Oxígeno/análisis
11.
Science ; 205(4401): 54-6, 1979 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17778900

RESUMEN

Measurements of the composition, temperature, and diurnal variations of the major neutral constituents in the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. Concentrations of carbon dioxide, carbon monoxide, molecular nitrogen, atomic oxygen, and helium are presented, in addition to an empirical model of the data. The concentrations of the heavy gases, carbon dioxide, carbon monoxide, and molecular nitrogen, rapidly decrease from the evening terminator toward the nightside; the concentration of atomic oxygen remains nearly constant and the helium concentration increases, an indication of a nightside bulge. The kinetic temperature inferred from scale heights drops rapidly from 230 K at the terminator to 130 K at a solar zenith angle of 120 degrees , and to 112 K at the antisolar point.

12.
Science ; 205(4401): 102-5, 1979 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17778917

RESUMEN

Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .

13.
Science ; 203(4382): 770-2, 1979 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17832991

RESUMEN

Measurements in situ of the neutral composition and temperature of the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. The presence of many gases, incluiding the major constituents CO(2), CO, N(2), O, and He has been confirmed. Carbon dioxide is the most abundant constituent at altitudes below about 155 kilometers in the terminator region. Above this altitude atomic oxygen is the major constituent, with O/CO(2) ratios in the upper atmosphere being greater than was commonly expected. Isotope ratios of O and C are close to terrestrial values. The temperature inferred from scale heights above 180 kilometers is about 400 K on the dayside near the evening terminator at a solar zenith angle of about 69 degrees . It decreases to about 230 K when the solar zenith angle is about 90 degrees .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...