Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(18): 31519-31529, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242232

RESUMEN

Diffraction-limited hard X-ray optics are key components for high-resolution microscopy, in particular for upcoming synchrotron radiation sources with ultra-low emittance. Diffractive optics like multilayer Laue lenses (MLL) have the potential to reach unprecedented numerical apertures (NA) when used in a crossed geometry of two one-dimensionally focusing lenses. However, minuscule fluctuations in the manufacturing process and technical limitations for high NA X-ray lenses can prevent a diffraction-limited performance. We present a method to overcome these challenges with a tailor-made refractive phase plate. With at-wavelength metrology and a rapid prototyping approach we demonstrate aberration correction for a crossed pair of MLL, improving the Strehl ratio from 0.41(2) to 0.81(4) at a numerical aperture of 3.3 × 10-3. This highly adaptable aberration-correction scheme provides an important tool for diffraction-limited hard X-ray focusing.

2.
J Struct Biol ; 212(3): 107631, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980520

RESUMEN

Studying nanostructured hierarchical materials such as the biomineralized bone is challenging due to their complex 3D structures that call for high spatial resolution. One route to study such materials is X-ray powder diffraction computed tomography (XRD-CT) that reveals the 3D distribution of crystalline phases and X-ray fluorescence computed tomography (XRF-CT) that provides element distributions. However, the spatial resolution of XRD-CT has thus far been limited. Here we demonstrate better than 120 nm 3D resolution on human bone in XRD-CT and XRF-CT measured simultaneously using X-ray nanobeams. The results pave the way for nanoscale 3D characterization of nanocrystalline composites like bone at unprecedented detail.


Asunto(s)
Huesos/fisiología , Nanoestructuras/química , Tomografía Computarizada por Rayos X/métodos , Difracción de Rayos X/métodos , Fluorescencia , Humanos , Rayos X
3.
J Synchrotron Radiat ; 24(Pt 2): 413-421, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28244434

RESUMEN

Point focusing measurements using pairs of directly bonded crossed multilayer Laue lenses (MLLs) are reported. Several flat and wedged MLLs have been fabricated out of a single deposition and assembled to realise point focusing devices. The wedged lenses have been manufactured by adding a stress layer onto flat lenses. Subsequent bending of the structure changes the relative orientation of the layer interfaces towards the stress-wedged geometry. The characterization at ESRF beamline ID13 at a photon energy of 10.5 keV demonstrated a nearly diffraction-limited focusing to a clean spot of 43 nm × 44 nm without significant side lobes with two wedged crossed MLLs using an illuminated aperture of approximately 17 µm × 17 µm to eliminate aberrations originating from layer placement errors in the full 52.7 µm × 52.7 µm aperture. These MLLs have an average individual diffraction efficiency of 44.5%. Scanning transmission X-ray microscopy measurements with convenient working distances were performed to demonstrate that the lenses are suitable for user experiments. Also discussed are the diffraction and focusing properties of crossed flat lenses made from the same deposition, which have been used as a reference. Here a focal spot size of 28 nm × 33 nm was achieved and significant side lobes were noticed at an illuminated aperture of approximately 23 µm × 23 µm.

4.
Opt Express ; 22(17): 20008-13, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25321210

RESUMEN

We demonstrate full-field X-ray microscopy using crossed multilayer Laue lenses (MLL). Two partial MLLs are prepared out of a 48 µm high multilayer stack consisting of 2451 alternating zones of WSi2 and Si. They are assembled perpendicularly in series to obtain two-dimensional imaging. Experiments are done in a laboratory X-ray microscope using Cu-Kα radiation (E = 8.05 keV, focal length f = 8.0 mm). Sub-100 nm resolution is demonstrated without mixed-order imaging at an appropriate position of the image plane. Although existing deviations from design parameters still cause aberrations, MLLs are a promising approach to realize hard X-ray microscopy at high efficiencies with resolutions down to the sub-10 nm range in future.

5.
J Synchrotron Radiat ; 21(Pt 5): 1122-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25178001

RESUMEN

Two different multilayer Laue lens designs were made with total deposition thicknesses of 48 µm and 53 µm, and focal lengths of 20.0 mm and 12.5 mm at 20.0 keV, respectively. From these two multilayer systems, several lenses were manufactured for one- and two-dimensional focusing. The latter is realised with a directly bonded assembly of two crossed lenses, that reduces the distance between the lenses in the beam direction to 30 µm and eliminates the necessity of producing different multilayer systems. Characterization of lens fabrication was performed using a laboratory X-ray microscope. Focusing properties have been investigated using ptychography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...