Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Memb Sci ; 6782023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37465550

RESUMEN

We systematically reduce the cross-link density of a PA network based on m-phenylene diamine by substituting a fraction of the trifunctional trimesoyl chloride cross-linking agent with a difunctional isophthaloyl analog that promotes chain extension, in order to elucidate robust design cues for improving the polyamide (PA) separation layer in reverse osmosis (RO) membranes for desalination. Thin films of these model PA networks are fully integrated into a composite membrane and evaluated in terms of their water flux and salt rejection. By incorporating 15 mol % of the difunctional chain extender, we reduce the cross-link density of the network by a factor of two, which leads to an 80 % increase in the free or unreacted amine content. The resulting swelling of the PA network in liquid water increases by a factor of two accompanied by a 30 % increase in the salt passage through the membrane. Surprisingly, this leads to a 30 % decrease in the overall permeance of water through the membrane. This conundrum is resolved by quantifying the microscopic diffusion coefficient of water inside the PA network with quasi-elastic neutron scattering. In the highest and lowest cross-link density networks, water shows strong signatures of confined diffusion. At short length scales, the water exhibits a translational diffusion that is consistent with the jump-diffusion mechanism. This translational diffusion coefficient is approximately five times slower in the lowest cross-linked density network, consistent with the reduced water permeance. This is interpreted as water molecules interacting more strongly with the increased free amine content. Over longer length scales the water diffusion is confined, exhibiting mobility that is independent of length scale. The length scales of confinement from the quasi-elastic neutron scattering experiments at which this transition from confined to translational diffusion occurs is on the order of (5 to 6) Å, consistent with complementary X-ray scattering, small angle neutron scattering, and positron annihilation lifetime spectroscopy measurements. The confinement appears to come from heterogeneities in the average inter-atomic distances, suggesting that diffusion occurs by water bouncing between chains and occasionally sticking to the polar functional groups. The results obtained here are compared with similar studies of water diffusion through both rigid porous silicates and ion exchange membranes, revealing robust design cues for engineering high-performance RO membranes.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921179

RESUMEN

An optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY (mDTEB), tailor-made for labeling CNFs used in simulated or in vivo ingestion exposure studies. Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) was used to confirm covalent attachment and purity of mDTEB-labeled CNFs. The photoluminescence properties of mDTEB-labeled CNFs, characterized using fluorescence spectroscopy, include excellent stability over a wide pH range (pH2 to pH10) and high quantum yield, which provides detection at low (µM) concentrations. FLIM analysis also showed that lignin-like impurities present on the CNF reduce the fluorescence of the mDTEB-labeled CNF, via quenching. Therefore, the chemical composition and the methods of CNF production affect subsequent studies. An in vitro triculture, small intestinal, epithelial model was used to assess the toxicity of ingested mDTEB-labeled CNFs. Zebrafish (Danio rerio) were used to assess in vivo environmental toxicity studies. No cytotoxicity was observed for CNFs, or mDTEB-labeled CNFs, either in the triculture cells or in the zebrafish embryos.

3.
Macromolecules ; 52(24)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33060868

RESUMEN

The optimization of ionic conductivity and lithium-ion battery stability can be achieved by independently tuning the ion transport and mechanical robustness of block polymer (BP) electrolytes. However, the ionic conductivity of BP electrolytes is inherently limited by the covalent attachment of the ionically conductive block to the mechanically robust block, among other factors. Herein, the BP electrolyte polystyrene-block-poly(oligo-oxyethylene methacrylate) [PS-b-POEM] was blended with POEM homopolymers of varying molecular weights. The incorporation of a higher molecular weight homopolymer additive (α > 1 state) promoted a "dry brush-like" homopolymer distribution within the BP self-assembly and led to higher lithium salt concentrations in the more mobile homopolymer-rich region, increasing overall ionic conductivity relative to the "wet brush-like" (α < 1 state) and unblended composites, where α is the molecular weight ratio between the POEM homopolymer and the POEM block in the copolymer. Neutron and X-ray reflectometry (NR and XRR, respectively) provided additional details on the lithium salt and polymer distributions. From XRR, the α > 1 blends showed increased interfacial widths in comparison to their BP (unblended) or α < 1 counterparts because of the more central distribution of the homopolymer. This result, paired with NR data that suggested even salt concentrations across the POEM domains, implied that there was a higher salt concentration in the homopolymer POEM-rich regions in the dry brush blend than in the wet brush blend. Furthermore, using 7Li solid-state nuclear magnetic resonance spectroscopy, we found a temperature corresponding to a transition in lithium mobility (T Li mobility) that was a function of blend type. T Li mobility was found to be 39 °C above T g in all cases. Interestingly, the ionic conductivity of the blended BPs was highest in the α > 1 composites, even though these composites had higher T gs than the α < 1 composites, demonstrating that homopolymer-rich conducting pathways formed in the α > 1 assemblies had a larger influence on conductivity than the greater lithium ion mobility in the α < 1 blends.

4.
J Chem Phys ; 149(16): 163310, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30384695

RESUMEN

Triblock polyelectrolyte gels were characterized by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The oppositely charged end blocks self-assemble into polyelectrolyte complex cores, while the neutral poly(ethylene oxide) middle block bridges adjacent cores. The size of the polyelectrolyte complex core does not change with temperature. However, the neutral middle block displays a temperature-dependent conformation. The liquid-like order of the complex core within the gel phase leads to stretched bridging chains that approach their unperturbed dimensions with increasing concentration. A stretch ratio for bridging chains was defined as the ratio between stretched and unperturbed dimensions. A further reduction in the chain stretching occurs with increasing temperature due to solvent quality. DLS observes multiple modes consistent with a collective diffusion (fast mode) and diffusion of clusters (slow mode). The dynamics of these clusters are at length scales associated with the SANS excess scattering, but with relaxation time near the crossover frequency observed by mechanical spectroscopy.

5.
Phys Rev Mater ; 2(3)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29904750

RESUMEN

Polyamide nanomembranes are at the heart of water desalination, a process which plays a critical role in clean water production. Improving their efficiency requires a better understanding of the relationship between chemistry, network structure, and performance but few techniques afford compositional information in ultrathin films (<100 nm). Here, we leverage resonant soft x-ray reflectivity, a measurement that is sensitive to the specific chemical bonds in organic materials, to quantify the functional group concentration in these polyamides. We first employ reference materials to establish quantitative relationships between changes in the optical constants and functional group density, and then use the results to evaluate the functional group concentrations of polyamide nanomembranes. We demonstrate that the difference in the amide carbonyl and carboxylic acid group concentrations can be used to calculate the crosslink density, which is shown to vary significantly across three different polyamide chemistries. A clear relationship is established between the functional group density and the permselectivity (α), indicating that more densely crosslinked materials result in a higher α of the nanomembranes. Finally, measurements on a polyamide/poly(acrylic acid) bilayer demonstrate the ability of this approach to quantify depth-dependent functional group concentrations in thin films.

6.
J Am Chem Soc ; 138(23): 7325-36, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27213216

RESUMEN

Mixed-linker zeolitic imidazolate frameworks (ZIFs) are nanoporous materials that exhibit continuous and controllable tunability of properties like effective pore size, hydrophobicity, and organophilicity. The structure of mixed-linker ZIFs has been studied on macroscopic scales using gravimetric and spectroscopic techniques. However, it has so far not been possible to obtain information on unit-cell-level linker distribution, an understanding of which is key to predicting and controlling their adsorption and diffusion properties. We demonstrate the use of (1)H combined rotation and multiple pulse spectroscopy (CRAMPS) NMR spin exchange measurements in combination with computational modeling to elucidate potential structures of mixed-linker ZIFs, particularly the ZIF 8-90 series. All of the compositions studied have structures that have linkers mixed at a unit-cell-level as opposed to separated or highly clustered phases within the same crystal. Direct experimental observations of linker mixing were accomplished by measuring the proton spin exchange behavior between functional groups on the linkers. The data were then fitted to a kinetic spin exchange model using proton positions from candidate mixed-linker ZIF structures that were generated computationally using the short-range order (SRO) parameter as a measure of the ordering, clustering, or randomization of the linkers. The present method offers the advantages of sensitivity without requiring isotope enrichment, a straightforward NMR pulse sequence, and an analysis framework that allows one to relate spin diffusion behavior to proposed atomic positions. We find that structures close to equimolar composition of the two linkers show a greater tendency for linker clustering than what would be predicted based on random models. Using computational modeling we have also shown how the window-type distribution in experimentally synthesized mixed-linker ZIF-8-90 materials varies as a function of their composition. The structural information thus obtained can be further used for predicting, screening, or understanding the tunable adsorption and diffusion behavior of mixed-linker ZIFs, for which the knowledge of linker distributions in the framework is expected to be important.

7.
Solid State Nucl Magn Reson ; 76-77: 29-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27039203

RESUMEN

We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra.

8.
Magn Reson Chem ; 54(9): 740-747, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27097766

RESUMEN

We outline the details of acquiring quantitative 13 C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance on the most ubiquitous polymer for organic electronic applications, poly(3-hexylthiophene) (P3HT), despite other groups' claims that CPMAS of P3HT is strictly nonquantitative. We lay out the optimal experimental conditions for measuring crystallinity in P3HT, which is a parameter that has proven to be critical in the electrical performance of P3HT-containing organic photovoltaics but remains difficult to measure by scattering/diffraction and optical methods despite considerable efforts. Herein, we overview the spectral acquisition conditions of the two P3HT films with different crystallinities (0.47 and 0.55) and point out that because of the chemical similarity of P3HT to other alkyl side chain, highly conjugated main chain polymers, our protocol could straightforwardly be extended to other organic electronic materials. Variable temperature 1 H NMR results are shown as well, which (i) yield insight into the molecular dynamics of P3HT, (ii) add context for spectral editing techniques as applied to quantifying crystallinity, and (iii) show why T1ρH , the 1 H spin-lattice relaxation time in the rotating frame, is a more optimal relaxation filter for distinguishing between crystalline and noncrystalline phases of highly conjugated alkyl side-chain polymers than other relaxation times such as the 1 H spin-spin relaxation time, T2H , and the spin-lattice relaxation time in the toggling frame, T1xzH . A 7 ms T1ρH spin lock filter, prior to CPMAS, allows for spectroscopic separation of crystalline and noncrystalline 13 C nuclear magnetic resonance signals. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

9.
Gels ; 2(4)2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28649573

RESUMEN

Hydrogels are of intense recent interest in connection with biomedical applications ranging from 3-D cell cultures and stem cell differentiation to regenerative medicine, controlled drug delivery and tissue engineering. This prototypical form of soft matter has many emerging material science applications outside the medical field. The physical processes underlying this type of solidification are incompletely understood and this limits design efforts aimed at optimizing these materials for applications. We address this general problem by applying multiple techniques (e.g., NMR, dynamic light scattering, small angle neutron scattering, rheological measurements) to the case of a peptide derivative hydrogelator (molecule 1, NapFFKYp) over a broad range of concentration and temperature to characterize both the formation of individual nanofibers and the fiber network. We believe that a better understanding of the hierarchical self-assembly process and control over the final morphology of this kind of material should have broad significance for biological and medicinal applications utilizing hydrogels.

10.
ACS Appl Mater Interfaces ; 6(9): 6127-38, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24746103

RESUMEN

This work describes the measurement and comparison of several important properties of native cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), such as crystallinity, morphology, aspect ratio, and surface chemistry. Measurement of the fundamental properties of seven different CNCs/CNFs, from raw material sources (bacterial, tunicate, and wood) using typical hydrolysis conditions (acid, enzymatic, mechanical, and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation), was accomplished using a variety of measurement methods. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy were used to conclude that CNCs, which are rodlike in appearance, have a higher crystallinity than CNFs, which are fibrillar in appearance. CNC aspect ratio distributions were measured and ranged from 148±147 for tunicate-CNCs to 23±12 for wood-CNCs. Hydrophobic interactions, measured using inverse gas chromatography (IGC), were found to be an important contribution to the total surface energy of both types of cellulose. In all cases, a trace amount of naturally occurring fluorescent compounds was observed after hydrolysis. Confocal and Raman microscopy were used to confirm that the fluorescent species were unique for each cellulose source, and demonstrated that such methods can be useful for monitoring purity during CNC/CNF processing. This study reveals the broad, tunable, multidimensional material space in which CNCs and CNFs exist.


Asunto(s)
Bacterias/química , Celulosa/química , Nanofibras , Nanopartículas , Urocordados/química , Madera/química , Ácidos/química , Animales , Cristalización , Enzimas/química , Microscopía Electrónica de Transmisión , Oxidación-Reducción
11.
ACS Macro Lett ; 3(2): 130-135, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35590492

RESUMEN

We report on measurements of order in semicrystalline, high molar mass poly(3-hexylthiophene) (P3HT) by solid-state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) measurements. The relative degree of crystallinity was estimated for two films with different drying conditions via X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Order determined by 13C NMR does not necessarily correlate with crystallinity, indicating that local order can occur in noncrystalline regions. Slow main chain dynamics influence the 13C NMR peak widths at lower temperatures (<0 °C), with side chain motions influencing the main chain motions. At higher temperatures (>0 °C), where narrower thiophene resonances are observed, these main chain conformation rearrangements occur on fast time scales (≪3 ms). This room-temperature dynamic disorder suggests that P3HT may be classified as a conformationally disordered (CONDIS) crystal.

12.
J Phys Chem B ; 115(19): 5785-93, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21520978

RESUMEN

A single crystal of α-trans-cinnamic acid was synthesized with a (13)C-label at the ß-carbon position and photoreacted to yield the [2+2] cycloaddition product, α-truxillic acid. (13)C{(1)H} cross-polarization (CP) single-crystal NMR experiments were performed on the unreacted and sequentially photoreacted samples for different goniometer orientations, and the spectra were simulated using the SIMMOL and SIMPSON software packages. Atomic coordinates from single-crystal X-ray diffraction data were used as inputs in the simulations, which allowed the chemical shift tensor to be precisely measured and related to the unit cell (or molecular) reference frame of cinnamic acid. The line widths of the (13)C resonances observed at different goniometer rotations were utilized to estimate the orientational dispersion of the cinnamic acid species, which ultimately provides a measure of disorder in the single crystal. The photoreacted sample, a solid solution of cinnamic and truxillic acids, maintained its single-crystal nature, even up to 44% conversion to truxillic acid, keeping its P2(1)/n symmetry. Upon photoirradiation, however, a slight loss of order was observed in the cinnamic acid species as evidenced by an increase in the (13)C NMR line widths, demonstrating that NMR can be used to monitor subtle orientational imperfections in single crystal to single crystal photoreactions.

13.
J Phys Chem B ; 112(41): 12920-6, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18811189

RESUMEN

We have detected a phase transition during the progress of the solid-state [2 + 2] photocycloaddition reaction of alpha-trans-cinnamic acid. The reaction was monitored using (13)C CPMAS experiments as a function of irradiation time of the parent alpha-trans-cinnamic acid, which forms the product dimer, alpha-truxillic acid. UV light centered at 350 nm was used for photoirradiation, which is in the "tail" of the absorption band of cinnamic acid. Two different crystal polymorphs of alpha-truxillic acid are observed (P2(1)/n and C2/c) at different stages of conversion of the parent crystal, assigned through (13)C NMR and powder X-ray diffraction. The two polymorphs showed clear, distinguishable patterns in the (13)C NMR spectra: a 2-peak versus 3-peak pattern corresponding to sites on the 4-membered sp (3) hybridized ring in the photoproduct. A phase transition is observed midway through the reaction, which we have assigned to the conversion of the P2(1)/n polymorph to the C2/ c polymorph of alpha-truxillic acid. The packing energy of the resultant mixed crystal of cinnamic acid and truxillic acid changes during the course of the photoreaction, which allows for the C2/c polymorph of truxillic acid to appear. Both phases have been confirmed via X-ray powder diffraction. Two techniques--differential scanning calorimetry and solid-state CPMAS NMR using increasingly fast rotational frequencies--demonstrate that the P2(1)/n phase is metastable.

14.
J Phys Chem B ; 110(12): 6270-3, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16553444

RESUMEN

The present work focuses on the topochemical photoconversion process in which alpha-trans-cinnamic acid becomes alpha-truxillic acid. This solid-state [2 + 2] cycloaddition reaction has previously been studied with X-ray diffraction, atomic force microscopy, and vibrational spectroscopy. However structural and kinetic details about the reaction are still debated. We present results from (13)C cross-polarization magic angle spinning solid-state NMR experiments that suggest that the Johnson, Mehl, Avrami, and Kolmogorov model of phase transformation kinetics can be applied to this system. The model elucidates parameters of the reaction, such as the nucleation rate, diffusion rate, and dimensionality of the reaction. From our data, it is concluded that this reaction follows one-dimensional growth with a decreasing nucleation rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...