Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Res Sq ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746315

RESUMEN

Bipolar disorder (BD) is characterized by disrupted circadian rhythms and neuronal loss. Lithium is neuroprotective and used to treat BD, but outcomes are variable. Past research identified that circadian rhythms in BD patient neurons are associated with lithium response (Li-R) or non-response (Li-NR). However, the underlying cellular mechanisms remain unknown. To study interactions among circadian clock genes and cell survival, and their role in BD and predicting lithium response, we tested selected genes ( PER1 , BMAL1 and REV-ERBα ) and small molecule modulators of ROR/REV-ERB nuclear receptors in models of cell survival using mouse neurons and stem-cell derived neuronal progenitor cells (NPC) from BD patients and controls. In apoptosis assays using staurosporine (STS), lithium was neuroprotective. Knockdown of PER1 , BMAL1 and REV-ERBα modified cell survival across models. In NPCs, reduced expression of PER1 and BMAL1 led to more extensive cell death in Li-NR vs. Li-R. Reduced REV-ERBα expression caused more extensive cell death in BD vs. control NPCs, without distinguishing Li-R and Li-NR. In IMHN, The REV-ERB agonist GSK4112 had strong effects on circadian rhythm amplitude, and was neuroprotective in mouse neurons and control NPCs, but not in BD NPCs. Expression of cell survival genes following STS and GSK4112 treatments revealed BD-associated, and Li-R associated differences in expression profiles. We conclude that the neuroprotective response to lithium is similar in NPCs from Li-R and Li-NR. However, knockdown of circadian clock genes or stimulation of REV-ERBs reveal distinct contributions to cell death in BD patient NPCs, some of which distinguish Li-R and Li-NR.

2.
Nat Genet ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637617

RESUMEN

Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.

3.
Transl Psychiatry ; 14(1): 172, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561342

RESUMEN

Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad de Hashimoto , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Fenotipo , Proteína C-Reactiva , Enfermedades Autoinmunes/genética , Biomarcadores , Estudio de Asociación del Genoma Completo
4.
JAMA Netw Open ; 7(3): e242299, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38483390

RESUMEN

Importance: Migraine is a prevalent and debilitating condition that substantially impacts quality of life. Investigating migraine prevalence, associated comorbidities, and potential military service exposures in veterans, focusing on gender differences, is crucial for targeted interventions and management strategies. Objective: To determine the prevalence of migraine, associated health comorbidities, and potential military service and environmental exposures among men and women US veterans using a large-scale epidemiological sample from the Million Veteran Program (MVP). Design, Setting, and Participants: This cross-sectional study analyzed self-report survey data from the MVP, a large epidemiological sample of US veterans that was started in 2011 and has ongoing enrollment. Eligible participants were selected from the MVP database in 2023. The study included 491 604 veterans to examine migraine prevalence, health comorbidities, demographic characteristics, military service history, and environmental exposures. Data were analyzed from December 2022 to July 2023. Exposures: Military service and environmental factors, such as chemical or biological warfare exposure, were considered. Main Outcomes and Measures: The primary outcome was migraine prevalence among men and women veterans, assessed through self-reported diagnoses. Secondary outcomes included the association between migraine and health comorbidities, demographic characteristics, military service history, and environmental exposures. Results: Of the 491 604 veterans included in this study, 450 625 (91.8%) were men and 40 979 (8.2%) were women. The lifetime prevalence of migraine was significantly higher in women (12 324 of 40 979 [30.1%]) than in men (36 816 of 450 625 [8.2%]). Migraine prevalence varied by race and ethnicity, with the highest prevalence in Hispanic or Latinx women (1213 of 3495 [34.7%]). Veterans with migraine reported worse general health, higher levels of pain, increased pain interference with work, a higher likelihood of psychiatric and neurological health conditions, and greater lifetime opioid use. Specific aspects of military service, including service post-September 2001 and deployment in Operation Enduring Freedom and Operation Iraqi Freedom, and environmental factors, including Agent Orange, chemical and biological welfare, and antinerve agent pills history, were significantly associated with migraine prevalence. Conclusions and Relevance: In this cross-sectional study of migraine, the results highlighted gender differences in migraine prevalence and associated health comorbidities among US veterans. The findings emphasized the need for interdisciplinary approaches to migraine management, increased awareness and education efforts, and population-based screening strategies, particularly for women and Hispanic veterans who are at greater risk. Our findings encourage further research into tailored interventions for specific subpopulations and the impact of military service and environmental exposures on migraine and related health conditions.


Asunto(s)
Trastornos Migrañosos , Veteranos , Masculino , Humanos , Femenino , Estudios Transversales , Prevalencia , Calidad de Vida , Trastornos Migrañosos/epidemiología , Dolor
5.
Res Sq ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410438

RESUMEN

Background: Incorporating genomic data into risk prediction has become an increasingly useful approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not. Methods: Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts. Results: The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p-0.003), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD. Conclusion: Results, especially those from the eMRS, reinforce earlier findings that methylation and trauma are interconnected and can be leveraged to increase the correct classification of those with vs. without PTSD. Moreover, our models can potentially be a valuable tool in predicting the future risk of developing PTSD. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting the condition and, relatedly, improve their performance in independent cohorts.

6.
Nat Commun ; 15(1): 614, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242899

RESUMEN

Tinnitus is a heritable, highly prevalent auditory disorder treated by multiple medical specialties. Previous GWAS indicated high genetic correlations between tinnitus and hearing loss, with little indication of differentiating signals. We present a GWAS meta-analysis, triple previous sample sizes, and expand to non-European ancestries. GWAS in 596,905 Million Veteran Program subjects identified 39 tinnitus loci, and identified genes related to neuronal synapses and cochlear structural support. Applying state-of-the-art analytic tools, we confirm a large number of shared variants, but also a distinct genetic architecture of tinnitus, with higher polygenicity and large proportion of variants not shared with hearing difficulty. Tissue-expression analysis for tinnitus infers broad enrichment across most brain tissues, in contrast to hearing difficulty. Finally, tinnitus is not only correlated with hearing loss, but also with a spectrum of psychiatric disorders, providing potential new avenues for treatment. This study establishes tinnitus as a distinct disorder separate from hearing difficulties.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Acúfeno , Humanos , Acúfeno/diagnóstico , Acúfeno/genética , Cóclea
7.
Mol Psychiatry ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875548

RESUMEN

Large-scale genetic studies of traumatic brain injury (TBI) are lacking; thus, our understanding of the influence of genetic factors on TBI risk and recovery is incomplete. This study aimed to conduct a genome-wide association study (GWAS) of TBI in VA Million Veteran Program (MVP) enrollees. Participants included a multi-ancestry cohort (European, African, and Hispanic ancestries; N = 304,485; 111,494 TBI cases, 192,991 controls). TBI was assessed using MVP survey data and International Classification of Diseases (ICD) codes from the Veterans Health Administration's electronic health record. GWAS was performed using logistic regression in PLINK, and meta-analyzed in METAL. FUMA was used for post-GWAS analysis. Genomic structural equation modeling (gSEM) was conducted to investigate underlying genetic associations with TBI, and bivariate MiXeR was used to estimate phenotype specific and shared polygenicity. SNP-based heritability was 0.060 (SE = 0.004, p = 7.83×10-66). GWAS analysis identified 15 genome-wide significant (GWS) loci at p < 5×10-8. Gene-based analyses revealed 14 gene-wide significant genes; top genes included NCAM1, APOE, FTO, and FOXP2. Gene tissue expression analysis identified the brain as significantly enriched, particularly in the frontal cortex, anterior cingulate cortex, and nucleus accumbens. Genetic correlations with TBI were significant for risk-taking behaviors and psychiatric disorders, but generally not significant for the neurocognitive variables investigated. gSEM analysis revealed stronger associations with risk-taking traits than with psychiatric traits. Finally, the genetic architecture of TBI was similar to polygenic psychiatric disorders. Neurodegenerative disorders including Alzheimer's and Parkinson's disease showed much less polygenicity, however, the proportion of shared variance with TBI was high. This first well-powered GWAS of TBI identified 15 loci including genes relevant to TBI biology, and showed that TBI is a heritable trait with comparable genetic architecture and high genetic correlation with psychiatric traits. Our findings set the stage for future TBI GWASs that focus on injury severity and diversity and chronicity of symptom sequelae.

8.
Res Sq ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37886496

RESUMEN

Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for the 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs. The multivariate GWASs of these GIBNs identified 74 genome-wide significant (GWS) loci (p<5×10-8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed with attention deficit hyperactivity disorder (ADHD), major depressive disorder (MDD), and insomnia, indicating genetic predisposition to a larger SA in the specific GIBN is associated with lower genetic risk of these disorders. CT GIBNs displayed a negative genetic correlation with alcohol dependence. Jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across phenotypes offers a new vantage point for mapping the cortex into genetically informed networks.

9.
Front Psychol ; 14: 1181055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818418

RESUMEN

Introduction: Evidence suggests that executive function (EF) may play a key role in development of PTSD, possibly influenced by factors such as trauma type and timing. Since EF can be improved through intervention, it may be an important target for promoting resilience to trauma exposure. However, more research is needed to understand the relation between trauma exposure, EF, and PTSD. The goal of this study was to improve understanding of EF as a potential antecedent or protective factor for the development of PTSD among military personnel. Method: In a cohort of U.S. Marines and Navy personnel (N = 1,373), the current study tested the association between exposure to traumatic events (pre-deployment and during deployment) and PTSD severity, and whether EF moderated these associations. Three types of pre-deployment trauma exposure were examined: cumulative exposure, which included total number of events participants endorsed as having happened to them, witnessed, or learned about; direct exposure, which included total number of events participants endorsed as having happened to them; and interpersonal exposure, which included total number of interpersonally traumatic events participants' endorsed. EF was measured using the Penn Computerized Neurocognitive Battery. Results: EF was associated with less PTSD symptom severity at pre-deployment, even when adjusting for trauma exposure, alcohol use, traumatic brain injury, and number of years in the military. EF also moderated the relation between cumulative trauma exposure and interpersonal trauma exposure and PTSD, with higher EF linked to a 20 and 33% reduction in expected point increase in PTSD symptoms with cumulative and interpersonal trauma exposure, respectively. Finally, higher pre-deployment EF was associated with reduced PTSD symptom severity at post-deployment, independent of deployment-related trauma exposure and adjusting for pre-deployment PTSD. Conclusion: Our results suggest that EF plays a significant, if small role in the development of PTSD symptoms after trauma exposure among military personnel. These findings provide important considerations for future research and intervention and prevention, specifically, incorporating a focus on improving EF in PTSD treatment.

10.
medRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693435

RESUMEN

Background: Prior epidemiological research has linked PTSD with specific physical health problems, but the comprehensive landscape of medical conditions associated with PTSD remains uncharacterized. Electronic health records (EHR) provide an opportunity to overcome prior clinical knowledge gaps and uncover associations with biological relevance that potentially vary by sex. Methods: PTSD was defined among biobank participants (total N=123,365) in a major healthcare system using two ICD code-based definitions: broad (1+ PTSD or acute stress codes versus 0; NCase=14,899) and narrow (2+ PTSD codes versus 0; NCase=3,026). Using a phenome-wide association (PheWAS) design, we tested associations between each PTSD definition and all prevalent disease umbrella categories, i.e., phecodes. We also conducted sex-stratified PheWAS analyses including a sex-by-diagnosis interaction term in each logistic regression. Results: A substantial number of phecodes were significantly associated with PTSDNarrow (61%) and PTSDBroad (83%). While top associations were shared between the two definitions, PTSDBroad captured 334 additional phecodes not significantly associated with PTSDNarrow and exhibited a wider range of significantly associated phecodes across various categories, including respiratory, genitourinary, and circulatory conditions. Sex differences were observed, in that PTSDBroad was more strongly associated with osteoporosis, respiratory failure, hemorrhage, and pulmonary heart disease among male patients, and with urinary tract infection, acute pharyngitis, respiratory infections, and overweight among female patients. Conclusions: This study provides valuable insights into a diverse range of comorbidities associated with PTSD, including both known and novel associations, while highlighting the influence of sex differences and the impact of defining PTSD using EHR.

11.
medRxiv ; 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37693460

RESUMEN

Posttraumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 novel). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (e.g., GRIA1, GRM8, CACNA1E ), developmental, axon guidance, and transcription factors (e.g., FOXP2, EFNA5, DCC ), synaptic structure and function genes (e.g., PCLO, NCAM1, PDE4B ), and endocrine or immune regulators (e.g., ESR1, TRAF3, TANK ). Additional top genes influence stress, immune, fear, and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.

12.
Am J Psychiatry ; 180(10): 739-754, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37491937

RESUMEN

OBJECTIVE: Multidisciplinary studies of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) implicate the dorsolateral prefrontal cortex (DLPFC) in disease risk and pathophysiology. Postmortem brain studies have relied on bulk-tissue RNA sequencing (RNA-seq), but single-cell RNA-seq is needed to dissect cell-type-specific mechanisms. The authors conducted the first single-nucleus RNA-seq postmortem brain study in PTSD to elucidate disease transcriptomic pathology with cell-type-specific resolution. METHOD: Profiling of 32 DLPFC samples from 11 individuals with PTSD, 10 with MDD, and 11 control subjects was conducted (∼415K nuclei; >13K cells per sample). A replication sample included 15 DLPFC samples (∼160K nuclei; >11K cells per sample). RESULTS: Differential gene expression analyses identified significant single-nucleus RNA-seq differentially expressed genes (snDEGs) in excitatory (EX) and inhibitory (IN) neurons and astrocytes, but not in other cell types or bulk tissue. MDD samples had more false discovery rate-corrected significant snDEGs, and PTSD samples had a greater replication rate. In EX and IN neurons, biological pathways that were differentially enriched in PTSD compared with MDD included glucocorticoid signaling. Furthermore, glucocorticoid signaling in induced pluripotent stem cell (iPSC)-derived cortical neurons demonstrated greater relevance in PTSD and opposite direction of regulation compared with MDD, especially in EX neurons. Many snDEGs were from the 17q21.31 locus and are particularly interesting given causal roles in disease pathogenesis and DLPFC-based neuroimaging (PTSD: ARL17B, LINC02210-CRHR1, and LRRC37A2; MDD: LRRC37A and LRP4), while others were regulated by glucocorticoids in iPSC-derived neurons (PTSD: SLC16A6, TAF1C; MDD: CDH3). CONCLUSIONS: The study findings point to cell-type-specific mechanisms of brain stress response in PTSD and MDD, highlighting the importance of examining cell-type-specific gene expression and indicating promising novel biomarkers and therapeutic targets.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos por Estrés Postraumático , Humanos , Corteza Prefontal Dorsolateral , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Trastornos por Estrés Postraumático/genética , Glucocorticoides/metabolismo , Perfilación de la Expresión Génica , Transcriptoma/genética , Neuronas/metabolismo , Corteza Prefrontal/metabolismo
13.
Genome Med ; 15(1): 36, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165447

RESUMEN

BACKGROUND: Hearing problems (HP) in adults are common and are associated with several comorbid conditions. Its prevalence increases with age, reflecting the cumulative effect of environmental factors and genetic predisposition. Although several risk loci have been already identified, HP biology and epidemiology are still insufficiently investigated by large-scale genetic studies. METHODS: Leveraging the UK Biobank, the Nurses' Health Studies (I and II), the Health Professionals Follow-up Study, and the Million Veteran Program, we conducted a comprehensive genome-wide investigation of HP in 748,668 adult participants (discovery N = 501,825; replication N = 226,043; cross-ancestry replication N = 20,800). We leveraged the GWAS findings to characterize HP polygenic architecture, exploring sex differences, polygenic risk across ancestries, tissue-specific transcriptomic regulation, cause-effect relationships with genetically correlated traits, and gene interactions with HP environmental risk factors. RESULTS: We identified 54 risk loci and demonstrated that HP polygenic risk is shared across ancestry groups. Our transcriptomic regulation analysis highlighted the potential role of the central nervous system in HP pathogenesis. The sex-stratified analyses showed several additional associations related to peripheral hormonally regulated tissues reflecting a potential role of estrogen in hearing function. This evidence was supported by the multivariate interaction analysis that showed how genes involved in brain development interact with sex, noise pollution, and tobacco smoking in relation to their HP associations. Additionally, the genetically informed causal inference analysis showed that HP is linked to many physical and mental health outcomes. CONCLUSIONS: The results provide many novel insights into the biology and epidemiology of HP in adults. Our sex-specific analyses and transcriptomic associations highlighted molecular pathways that may be targeted for drug development or repurposing. Additionally, the potential causal relationships identified may support novel preventive screening programs to identify individuals at risk.


Asunto(s)
Predisposición Genética a la Enfermedad , Caracteres Sexuales , Humanos , Adulto , Masculino , Femenino , Estudios de Seguimiento , Herencia Multifactorial , Audición , Estudio de Asociación del Genoma Completo/métodos
14.
Eur Neuropsychopharmacol ; 74: 1-14, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126998

RESUMEN

Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.


Asunto(s)
Trastorno Bipolar , Relojes Circadianos , Ratones , Animales , Litio/farmacología , Litio/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Relojes Circadianos/genética , Supervivencia Celular , Ritmo Circadiano , Fibroblastos , Caspasas/farmacología , Caspasas/uso terapéutico
15.
Mol Psychiatry ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991131

RESUMEN

Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E-09 and 4.10E-18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.

16.
Neuropharmacology ; 226: 109410, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608815

RESUMEN

Bipolar disorder (BD) is characterized by manic and depressive mood episodes and loss of brain gray matter. Lithium has antimanic and neuroprotective properties, but only 30% BD patients respond to lithium pharmacotherapy. Dopamine signaling has been implicated in BD and may contribute to lithium response. Methamphetamine (METH) stimulates dopamine release and models the clinical features of mania but has never been used to study cell death in BD patient neurons. We used BD patient derived neuronal progenitor cells (NPCs) to determine whether the vulnerability to cell death differed in samples from lithium responder (Li-R) and non-responder (Li-NR) BD patients and healthy controls following METH exposure in vitro. We hypothesized that NPCs from Li-R and Li-NR would differ in vulnerability to METH, dopamine signaling and neuroprotection from lithium. Following METH, NPCs from controls and Li-NR showed significantly greater cell loss compared to Li-R. Pre-treatment of NPCs with the D1 dopamine receptor antagonist SCH 23390 reversed the neurotoxic effects of METH. In Li-R NPCs, expression of phosho-ERK1/2 was significantly increased. In Li-NR NPCs, phospho-AKT, D1 and D2 dopamine receptor proteins were significantly increased. Pre-treatment of NPCs with lithium before METH reversed the neurotoxic effects of METH in control NPCs, whereas Li-NR showed less protective benefit. Li-R cells showed decreased levels of cell death after METH and comparatively high viability, and lithium treatment did not increase viability any further. This novel NPC model of mania reveals differences in cell death that could help identify mechanisms of lithium response in BD.


Asunto(s)
Trastorno Bipolar , Metanfetamina , Células-Madre Neurales , Humanos , Litio/farmacología , Trastorno Bipolar/tratamiento farmacológico , Compuestos de Litio/farmacología , Manía/tratamiento farmacológico , Metanfetamina/farmacología , Dopamina/farmacología , Antimaníacos/farmacología
17.
J Int Neuropsychol Soc ; 29(8): 789-797, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36503573

RESUMEN

OBJECTIVES: Data from neurocognitive assessments may not be accurate in the context of factors impacting validity, such as disengagement, unmotivated responding, or intentional underperformance. Performance validity tests (PVTs) were developed to address these phenomena and assess underperformance on neurocognitive tests. However, PVTs can be burdensome, rely on cutoff scores that reduce information, do not examine potential variations in task engagement across a battery, and are typically not well-suited to acquisition of large cognitive datasets. Here we describe the development of novel performance validity measures that could address some of these limitations by leveraging psychometric concepts using data embedded within the Penn Computerized Neurocognitive Battery (PennCNB). METHODS: We first developed these validity measures using simulations of invalid response patterns with parameters drawn from real data. Next, we examined their application in two large, independent samples: 1) children and adolescents from the Philadelphia Neurodevelopmental Cohort (n = 9498); and 2) adult servicemembers from the Marine Resiliency Study-II (n = 1444). RESULTS: Our performance validity metrics detected patterns of invalid responding in simulated data, even at subtle levels. Furthermore, a combination of these metrics significantly predicted previously established validity rules for these tests in both developmental and adult datasets. Moreover, most clinical diagnostic groups did not show reduced validity estimates. CONCLUSIONS: These results provide proof-of-concept evidence for multivariate, data-driven performance validity metrics. These metrics offer a novel method for determining the performance validity for individual neurocognitive tests that is scalable, applicable across different tests, less burdensome, and dimensional. However, more research is needed into their application.


Asunto(s)
Benchmarking , Simulación de Enfermedad , Adulto , Adolescente , Niño , Humanos , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados , Pruebas de Estado Mental y Demencia , Psicometría , Simulación de Enfermedad/diagnóstico
18.
Biol Psychiatry ; 93(4): 362-369, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36335070

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) and posttraumatic stress disorder (PTSD) are associated, but it is unclear if this is a causal relationship or confounding. We used genetic analyses and sibling comparisons to clarify the direction of this relationship. METHODS: Linkage disequilibrium score regression and 2-sample Mendelian randomization were used to test for genetic correlation (rg) and bidirectional causal effects using European ancestry genome-wide association studies of ADHD (20,183 cases and 35,191 controls) and 6 PTSD definitions (up to 320,369 individuals). Several additional variables were included in the analysis to verify the independence of the ADHD-PTSD relationship. In a population-based sibling comparison (N = 2,082,118 individuals), Cox regression models were fitted to account for time at risk, a range of sociodemographic factors, and unmeasured familial confounders (via sibling comparisons). RESULTS: ADHD and PTSD had consistent rg (rg range, 0.43-0.52; p < .001). ADHD genetic liability was causally linked with increased risk for PTSD (ß = 0.367; 95% CI, 0.186-0.552; p = 7.68 × 10-5). This result was not affected by heterogeneity, horizontal pleiotropy (Mendelian randomization Egger intercept = 4.34 × 10-4, p = .961), or other phenotypes and was consistent across PTSD datasets. However, we found no consistent associations between PTSD genetic liability and ADHD risk. Individuals diagnosed with ADHD were at a higher risk for developing PTSD than their undiagnosed sibling (hazard ratio = 2.37; 95% CI, 1.98-3.53). CONCLUSIONS: Our findings add novel evidence supporting the need for early and effective treatment of ADHD, as patients with this diagnosis are at significantly higher risk to develop PTSD later in life.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Hermanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana
19.
Front Psychol ; 13: 971350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438371

RESUMEN

Unpredictability is increasingly recognized as a primary dimension of early life adversity affecting lifespan mental health trajectories; screening for these experiences is therefore vital. The Questionnaire of Unpredictability in Childhood (QUIC) is a 38-item tool that measures unpredictability in childhood in social, emotional and physical domains. The available evidence indicates that exposure to unpredictable experiences measured with the QUIC predicts internalizing symptoms including depression and anxiety. The purpose of the present study was to validate English and Spanish brief versions (QUIC-5) suitable for administration in time-limited settings (e.g., clinical care settings, large-scale epidemiological studies). Five representative items were identified from the QUIC and their psychometric properties examined. The predictive validity of the QUIC-5 was then compared to the QUIC by examining mental health in four cohorts: (1) English-speaking adult women assessed at 6-months postpartum (N = 116), (2) English-speaking male veterans (N = 95), (3) English-speaking male and female adolescents (N = 155), and (4) Spanish-speaking male and female adults (N = 285). The QUIC-5 demonstrated substantial variance in distributions in each of the cohorts and is correlated on average 0.84 (r's = 0.81-0.87) with the full 38-item version. Furthermore, the QUIC-5 predicted internalizing symptoms (anxiety and depression) in all cohorts with similar effect sizes (r's = 0.16-0.39; all p's < 0.05) to the full versions (r's = 0.19-0.42; all p's < 0.05). In sum, the QUIC-5 exhibits good psychometric properties and is a valid alternative to the full QUIC. These findings support the future use of the QUIC-5 in clinical and research settings as a concise way to measure unpredictability, identify risk of psychopathology, and intervene accordingly.

20.
Behav Res Ther ; 159: 104223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36327523

RESUMEN

Insomnia is a common and impairing consequence of military deployment, but little is known about pre-deployment risk factors for post-deployment insomnia. Abnormal threat learning tendencies are commonly observed in individuals with insomnia and maladaptive responses to stress have been implicated in the development of insomnia, suggesting that threat learning could be an important risk factor for post-deployment insomnia. Here, we examined pre-deployment threat learning as a predictor of post-deployment insomnia and the potential mechanisms underlying this effect. Male servicemembers (N = 814) completed measures of insomnia, psychiatric symptoms, and a threat learning task before and after military deployment. Threat learning indices that differentiated participants with versus withoutinsomnia at post-deployment were tested as pre-deployment predictors of post-deployment insomnia. Post-deployment insomnia was linked to elevations on several threat learning indices at post-deployment, but only higher threat conditioning, as indexed by higher threat expectancy ratings to the danger cue, emerged as a pre-deployment predictor of post-deployment insomnia. This effect was independent of combat exposure levels and partially mediated by greater post-deployment nightmares. The tendency to acquire stronger expectations of aversive events following encounters with danger cues may increase risk for post-deployment insomnia, in part due to the development of more severe nightmares.


Asunto(s)
Personal Militar , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos por Estrés Postraumático , Masculino , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Trastornos por Estrés Postraumático/psicología , Personal Militar/psicología , Sueños , Aprendizaje/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...