Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
2.
PLoS One ; 19(1): e0296790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38227598

RESUMEN

SpinoCerebellar Ataxia type 7 (SCA7) is an inherited disorder caused by CAG triplet repeats encoding polyglutamine expansion in the ATXN7 protein, which is part of the transcriptional coactivator complex SAGA. The mutation primarily causes neurodegeneration in the cerebellum and retina, as well as several forebrain structures. The SCA7140Q/5Q knock-in mouse model recapitulates key disease features, including loss of vision and motor performance. To characterize the temporal progression of brain degeneration of this model, we performed a longitudinal study spanning from early to late symptomatic stages using high-resolution magnetic resonance imaging (MRI) and in vivo 1H-magnetic resonance spectroscopy (1H-MRS). Compared to wild-type mouse littermates, MRI analysis of SCA7 mice shows progressive atrophy of defined brain structures, with the striatum, thalamus and cortex being the first and most severely affected. The volume loss of these structures coincided with increased motor impairments in SCA7 mice, suggesting an alteration of the sensory-motor network, as observed in SCA7 patients. MRI also reveals atrophy of the hippocampus and anterior commissure at mid-symptomatic stage and the midbrain and brain stem at late stage. 1H-MRS of hippocampus, a brain region previously shown to be dysfunctional in patients, reveals early and progressive metabolic alterations in SCA7 mice. Interestingly, abnormal glutamine accumulation precedes the hippocampal atrophy and the reduction in myo-inositol and total N-acetyl-aspartate concentrations, two markers of glial and neuronal damage, respectively. Together, our results indicate that non-cerebellar alterations and glial and neuronal metabolic impairments may play a crucial role in the development of SCA7 mouse pathology, particularly at early stages of the disease. Degenerative features of forebrain structures in SCA7 mice correspond to current observations made in patients. Our study thus provides potential biomarkers that could be used for the evaluation of future therapeutic trials using the SCA7140Q/5Q model.


Asunto(s)
Ataxias Espinocerebelosas , Humanos , Ratones , Animales , Estudios Longitudinales , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxina-7/genética , Imagen por Resonancia Magnética , Prosencéfalo/metabolismo , Espectroscopía de Resonancia Magnética , Atrofia/patología
3.
J Biomed Sci ; 29(1): 107, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539812

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS: We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS: Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS: Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.


Asunto(s)
Enfermedades de la Retina , Ataxias Espinocerebelosas , Ratones , Animales , Ataxias Espinocerebelosas/genética , Factores de Transcripción/genética , Modelos Animales de Enfermedad , Enfermedades de la Retina/genética , Expresión Génica , Epigénesis Genética
4.
Front Mol Neurosci ; 15: 947490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176957

RESUMEN

Adeno-associated virus (AAV)-based brain gene therapies require precision without off-targeting of unaffected neurons to avoid side effects. The cerebellum and its cell populations, including granule and Purkinje cells, are vulnerable to neurodegeneration; hence, conditions to deliver the therapy to specific cell populations selectively remain challenging. We have investigated a system consisting of the AAV serotypes, targeted injections, and transduction modes (direct or retrograde) for targeted delivery of AAV to cerebellar cell populations. We selected the AAV-PHP.eB and AAVrh10 serotypes valued for their retrograde features, and we thoroughly examined their cerebellar transduction pattern when injected into lobules and deep cerebellar nuclei. We found that AAVrh10 is suitable for the transduction of neurons in the mode highly dependent on placing the virus at axonal terminals. The strategy secures selective transduction for granule cells. The AAV-PHP.eB can transduce Purkinje cells and is very selective for the cell type when injected into the DCN at axonal PC terminals. Therefore, both serotypes can be used in a retrograde mode for selective transduction of major neuronal types in the cerebellum. Moreover, our in vivo transduction strategies are suitable for pre-clinical protocol development for gene delivery to granule cells by AAVrh10 and Purkinje cells by AAV-PHPeB.

5.
Prog Neurobiol ; 212: 102246, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35151792

RESUMEN

Retinoic acid is a powerful regulator of brain development, however its postnatal functions only start to be elucidated. We show that retinoic acid receptor beta (RARß), is involved in neuroprotection of striatopallidal medium spiny neurons (spMSNs), the cell type affected in different neuropsychiatric disorders and particularly prone to degenerate in Huntington disease (HD). Accordingly, the number of spMSNs was reduced in the striatum of adult Rarß-/- mice, which may result from mitochondrial dysfunction and neurodegeneration. Mitochondria morphology was abnormal in mutant mice whereas in cultured striatal Rarß-/- neurons mitochondria displayed exacerbated depolarization, and fragmentation followed by cell death in response to glutamate or thapsigargin-induced calcium increase. In vivo, Rarß-/- spMSNs were also more vulnerable to the mitochondrial toxin 3-nitropropionic acid (3NP), known to induce HD symptoms in human and rodents. In contrary, an RARß agonist, AC261066, decreased glutamate-induced toxicity in primary striatal neurons in vitro, and diminished mitochondrial dysfunction, spMSN cell death and motor deficits induced in wild type mice by 3NP. We demonstrate that the striatopallidal pathway is compromised in Rarß-/- mice and associated with HD-like motor abnormalities. Importantly, similar motor abnormalities and selective reduction of spMSNs were induced by striatal or spMSN-specific inactivation of RARß, further supporting a neuroprotective role of RARß in postnatal striatum.


Asunto(s)
Enfermedad de Huntington , Neuronas , Animales , Ácido Glutámico/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Receptores de Ácido Retinoico
6.
J Neurosci ; 41(22): 4910-4936, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33888607

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.


Asunto(s)
Cerebelo/patología , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología , Animales , Regulación hacia Abajo , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Transcriptoma
7.
Front Neurosci ; 14: 571, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581696

RESUMEN

Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.

8.
Neurotherapeutics ; 16(4): 1074-1096, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31432449

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.


Asunto(s)
Ataxina-7/genética , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/tendencias , Marcación de Gen/tendencias , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Animales , Ataxina-7/metabolismo , Autofagia/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Sistemas de Liberación de Medicamentos/métodos , Marcación de Gen/métodos , Terapia Genética/métodos , Terapia Genética/tendencias , Humanos , Neuronas/metabolismo , Neuronas/patología , Péptidos/genética , Péptidos/metabolismo , Ataxias Espinocerebelosas/metabolismo
9.
Mol Neurobiol ; 54(5): 3859-3878, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27405468

RESUMEN

Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARß-null mutant mice, we identified genomic targets of RARß in the striatum. Characterization of RARß transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARß in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e-5), cAMP (p = 4.5e-4), and calcium signaling (p = 3.4e-3). Many identified RARß target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARß transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARß in huntingtin protein aggregates may account for reduced RA signaling reported in HD.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Huntington/genética , Enfermedades Neurodegenerativas/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Transcripción Genética , Tretinoina/metabolismo , Animales , Sitios de Unión , ADN/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neostriado/metabolismo , Neostriado/patología , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Elementos de Respuesta/genética
10.
J Neurosci ; 35(43): 14467-75, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26511239

RESUMEN

The mammalian striatum controls sensorimotor and psychoaffective functions through coordinated activities of its two striatonigral and striatopallidal output pathways. Here we show that retinoic acid receptor ß (RARß) controls development of a subpopulation of GABAergic, Gad65-positive striatonigral projection neurons. In Rarb(-/-) knock-out mice, concomitant reduction of Gad65, dopamine receptor D1 (Drd1), and substance P expression at different phases of prenatal development was associated with reduced number of Drd1-positive cells at birth, in contrast to normal numbers of striatopallidal projection neurons expressing dopamine receptor D2. Fate mapping using BrdU pulse-chase experiments revealed that such deficits may originate from compromised proliferation of late-born striosomal neurons and lead to decreased number of Drd1-positive cells retaining BrdU in postnatal day (P) 0 Rarb(-/-) striatum. Reduced expression of Fgf3 in the subventricular zone of the lateral ganglionic eminence (LGE) at embryonic day 13.5 may underlie such deficits by inducing premature differentiation of neuronal progenitors, as illustrated by reduced expression of the proneural gene Ascl1 (Mash1) and increased expression of Meis1, a marker of postmitotic LGE neurons. In agreement with a critical role of FGF3 in this control, reduced number of Ascl1-expressing neural progenitors, and a concomitant increase of Meis1-expressing cells, were observed in primary cell cultures of Rarb(-/-) LGE. This defect was normalized by addition of fibroblast growth factor (FGF). Such data point to role of Meis1 in striatal development, also supported by reduced neuronal differentiation in the LGE of Meis1(-/-) embryos. Our data unveil a novel mechanism of development of striatonigral projection neurons involving retinoic acid and FGF, two signals required for positioning the boundaries of Meis1-expressing cells.


Asunto(s)
Cuerpo Estriado/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Proteínas de Homeodominio/fisiología , Proteínas de Neoplasias/fisiología , Neuronas/fisiología , Receptores de Ácido Retinoico/fisiología , Sustancia Negra/fisiología , Animales , Antimetabolitos/farmacología , Bromodesoxiuridina/farmacología , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Femenino , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Glutamato Descarboxilasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Cultivo Primario de Células , Receptores de Dopamina D1/metabolismo , Sustancia Negra/citología , Sustancia Negra/embriología
11.
PLoS Genet ; 11(6): e1005213, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26030625

RESUMEN

The retinoid X receptors (RXRs) are ligand-activated transcription factors which heterodimerize with a number of nuclear hormone receptors, thereby controlling a variety of (patho)-physiological processes. Although synthetic RXR ligands are developed for the treatment of various diseases, endogenous ligand(s) for these receptors have not been conclusively identified. We show here that mice lacking cellular retinol binding protein (Rbp1-/-) display memory deficits reflecting compromised RXR signaling. Using HPLC-MS and chemical synthesis we identified in Rbp1-/- mice reduced levels of 9-cis-13,14-dihydroretinoic acid (9CDHRA), which acts as an RXR ligand since it binds and transactivates RXR in various assays. 9CDHRA rescues the Rbp1-/- phenotype similarly to a synthetic RXR ligand and displays similar transcriptional activity in cultured human dendritic cells. High endogenous levels of 9CDHRA in mice indicate physiological relevance of these data and that 9CDHRA acts as an endogenous RXR ligand.


Asunto(s)
Trastornos de la Memoria/genética , Receptores X Retinoide/metabolismo , Tretinoina/análogos & derivados , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Receptores X Retinoide/química , Receptores X Retinoide/genética , Proteínas Celulares de Unión al Retinol/genética , Proteínas Celulares de Unión al Retinol/metabolismo , Tretinoina/metabolismo
12.
Biochim Biophys Acta ; 1809(4-6): 226-35, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21342666

RESUMEN

The hemolymph juvenile hormone binding protein (JHBP) plays a key role in transporting juvenile hormone (JH) to target tissues and in protecting JH from the degradation by nonspecific esterases. Juvenile hormone esterase (JHE) removes JH signal at precisely defined insect developmental stages. The functional analysis of regulatory elements in the core promoter has been described only for the jhe gene. In this report we define the core promoter functional elements in the Galleria mellonella jhbp gene. It appears that jhbp core promoter is under strong control of TATA box and the transcription site (tss). In contrast to regulation of the jhe gene, the jhbp core promoter contains a sequence which directly suppresses jhbp expression. Evidences are provided for the contribution of the will die slowly (WDS) suppressory protein in jhbp basal transcription. We have also shown that the activity of the jhbp core promoter can be regulated by JHIII, and lesser so by 20E.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Insectos/genética , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , TATA Box/genética , Animales , Secuencia de Bases , Western Blotting , Proteínas Portadoras/metabolismo , Línea Celular , Ecdisterona/farmacología , Ácidos Grasos Monoinsaturados/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Unión Proteica , Spodoptera , Sitio de Iniciación de la Transcripción , Técnicas del Sistema de Dos Híbridos
13.
Postepy Biochem ; 57(4): 425-41, 2011.
Artículo en Polaco | MEDLINE | ID: mdl-22568175

RESUMEN

Each gene possesses its individual program of expression. A large part of information defining this program is stored in the core promoter sequence. In this review the diversity of core promoter regulatory elements and their organization into functional units is described. The basic transcription factors and nuclear receptors which cooperate with the core promoter elements are reviewed. The effect of post-translational modification of regulatory proteins on the assembly and function of polymerase initiation complexes is presented. Selected experimental approaches applied for finding functional interactions between regulatory elements and their protein partners are discussed.


Asunto(s)
Eucariontes/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Proteína de Unión a TATA-Box/metabolismo , Activación Transcripcional
14.
Biochim Biophys Acta ; 1779(6-7): 390-401, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18515113

RESUMEN

The juvenile hormone binding protein (JHBP) plays a key role in the protection and transport of the hormone to target tissues. In this report the sequence of the jhbp promoter comprising about 2000 bp is characterized. Using a minimized false positive algorithm, six putative regulatory elements, Hunchback, Heat shock factor binding element, Ultrabithorax, Broad-Complex Z3, Elf-1 and Chorion factor 1/ultraspiracle (CF1/Usp) were found in the distal promoter of the jhbp gene. Proteins from nuclear extract of Galleria mellonella fat body form four specific complexes with probe containing TATA box, five complexes with Inr probe and one protein complex with DPE probe. EMSA and footprinting analyses showed that one of the three CF1/Usp elements (starting at -1053) has an exceptionally high affinity to Usp protein. An unknown, high-affinity Usp/EcRDBD-binding element (TCAACA-AAC-TGTTCA), distinct from 20-hydroxyecdysone response elements, was identified in the jhbp gene promoter, based on a footprinting assay. Deletions of jhbp promoter in the regions containing the CF1/Usp elements enhance the transcriptional activity of luciferase reporter gene in the Trichoplusia ni High Five cell line. Obtained data suggest that jhbp promoter is TATA- and Inr-driven, CF1/Usp elements exhibit inhibitory effect on jhbp expression, and an interaction between Usp and DNA relies on recognition of the consensus sequence (GGGTCA) and on ionic interactions of several phosphate groups outside from this element.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Unión al ADN/metabolismo , Genes de Insecto , Proteínas de Insectos/genética , Hormonas Juveniles/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Receptores de Esteroides/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Manduca/genética , Manduca/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos , Regiones Promotoras Genéticas , Receptores de Esteroides/genética , Elementos Reguladores de la Transcripción , Especificidad de la Especie , TATA Box , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...