Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1394388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803381

RESUMEN

In droplet microfluidics, UV-Vis absorption spectroscopy along with colorimetric assays have been widely used for chemical and biochemical analysis. However, the sensitivity of the measurement can be limited by the short optical pathlength. Here we report a novel design to enhance the sensitivity by removing oil and converting the droplets into a single-phase aqueous flow, which can be measured within a U-shape channel with long optical pathlength. The flow cells were fabricated via 3D printing. The calibration results have demonstrated complete oil removal and effective optical pathlengths similar to the designed channel lengths (from 5 to 20 mm). The flow cell was further employed in a droplet microfluidic-based phosphate sensing system. The measured phosphate levels displayed excellent consistency with data obtained from traditional UV spectroscopy analysis. This flow cell design overcomes the limitations of short optical pathlengths in droplet microfluidics and has the potential to be used for in situ and continuous monitoring.

2.
Lab Chip ; 22(5): 859-875, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170611

RESUMEN

Since the first reports two decades ago, droplet-based systems have emerged as a compelling tool for microbiological and (bio)chemical science, with droplet flow providing multiple advantages over standard single-phase microfluidics such as removal of Taylor dispersion, enhanced mixing, isolation of droplet contents from surfaces, and the ability to contain and address individual cells or biomolecules. Typically, a droplet microfluidic device is designed to produce droplets with well-defined sizes and compositions that flow through the device without interacting with channel walls. Successful droplet flow is fundamentally dependent on the microfluidic device - not only its geometry but moreover how the channel surfaces interact with the fluids. Here we summarise the materials and fabrication techniques required to make microfluidic devices that deliver controlled uniform droplet flow, looking not just at physical fabrication methods, but moreover how to select and modify surfaces to yield the required surface/fluid interactions. We describe the various materials, surface modification techniques, and channel geometry approaches that can be used, and give examples of the decision process when determining which material or method to use by describing the design process for five different devices with applications ranging from field-deployable chemical analysers to water-in-water droplet creation. Finally we consider how droplet microfluidic device fabrication is changing and will change in the future, and what challenges remain to be addressed in the field.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Microfluídica , Agua
3.
RSC Adv ; 10(51): 30975-30981, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516030

RESUMEN

Maintaining a hydrophobic channel surface is critical to ensuring long-term stable flow in droplet microfluidics. Monolithic fluoropolymer chips ensure robust and reliable droplet flow as their native fluorous surfaces naturally preferentially wet fluorocarbon oils and do not deteriorate over time. Their fabrication, however, typically requires expensive heated hydraulic presses that make them inaccessible to many laboratories. Here we describe a method for micropatterning and bonding monolithic fluoropolymer flow cells from a commercially available melt-processable fluoropolymer, Dyneon THV 500GZ, that only requires a standard laboratory oven. Using this technique, we demonstrate the formation of complex microstructures, specifically the fabrication of sensitive absorbance flow cells for probing droplets in flow, featuring path lengths up to 10 mm. The native fluorous channel surface means the flow cells can be operated over extended periods, demonstrated by running droplets continuously through a chip for 16 weeks.

4.
Environ Sci Technol ; 53(16): 9677-9685, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31352782

RESUMEN

Microfluidic-based chemical sensors take laboratory analytical protocols and miniaturize them into field-deployable systems for in situ monitoring of water chemistry. Here, we present a prototype nitrate/nitrite sensor based on droplet microfluidics that in contrast to standard (continuous phase) microfluidic sensors, treats water samples as discrete droplets contained within a flow of oil. The new sensor device can quantify the concentrations of nitrate and nitrite within each droplet and provides high measurement frequency and low fluid consumption. Reagent consumption is at a rate of 2.8 mL/day when measuring every ten seconds, orders of magnitude more efficient than those of the current state-of-the-art sensors. The sensor's capabilities were demonstrated during a three-week deployment in a tidal river. The accurate and high frequency data (6% error relative to spot samples, measuring at 0.1 Hz) elucidated the influence of tidal variation, rain events, diurnal effects, and anthropogenic input on concentrations at the deployment site. This droplet microfluidic-based sensor is suitable for a wide range of applications such as monitoring of rivers, lakes, coastal waters, and industrial effluents.


Asunto(s)
Técnicas Analíticas Microfluídicas , Nitritos , Microfluídica , Nitratos , Óxidos de Nitrógeno , Ríos
5.
Nat Commun ; 10(1): 2741, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227695

RESUMEN

Knowing how biomarker levels vary within biological fluids over time can produce valuable insight into tissue physiology and pathology, and could inform personalised clinical treatment. We describe here a wearable sensor for monitoring biomolecule levels that combines continuous fluid sampling with in situ analysis using wet-chemical assays (with the specific assay interchangeable depending on the target biomolecule). The microfluidic device employs a droplet flow regime to maximise the temporal response of the device, using a screw-driven push-pull peristaltic micropump to robustly produce nanolitre-sized droplets. The fully integrated sensor is contained within a small (palm-sized) footprint, is fully autonomous, and features high measurement frequency (a measurement every few seconds) meaning deviations from steady-state levels are quickly detected. We demonstrate how the sensor can track perturbed glucose and lactate levels in dermal tissue with results in close agreement with standard off-line analysis and consistent with changes in peripheral blood levels.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Sistemas de Atención de Punto , Piel/química , Dispositivos Electrónicos Vestibles , Biomarcadores/análisis , Glucemia/análisis , Diseño de Equipo , Glucosa/análisis , Voluntarios Sanos , Humanos , Ácido Láctico/análisis , Microdiálisis/instrumentación , Microdiálisis/métodos , Técnicas Analíticas Microfluídicas/métodos
6.
Nanotechnology ; 30(32): 324001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30986779

RESUMEN

Silicon nanowire (Si NW) sensors have attracted great attention due to their ability to provide fast, low-cost, label-free, real-time detection of chemical and biological species. Usually configured as field effect transistors (FETs), they have already demonstrated remarkable sensitivity with high selectivity (through appropriate functionalisation) towards a large number of analytes in both liquid and gas phases. Despite these excellent results, Si NW FET sensors have not yet been successfully employed to detect single molecules of either a chemical or biological target species. Here we show that sensors based on silicon junctionless nanowire transistors (JNTs), the simplest possible transistors, are capable of detecting the protein streptavidin at a concentration as low as 580 zM closely approaching the single molecule level. This ultrahigh detection sensitivity is due to the intrinsic advantages of junctionless devices over conventional FETs. Apart from their superior functionality, JNTs are much easier to fabricate by standard microelectronic processes than transistors containing p-n junctions. The ability of JNT sensors to detect ultra-low concentrations (in the zeptomolar range) of target species, and their potential for low-cost mass production, will permit their deployment in numerous environments, including life sciences, biotechnology, medicine, pharmacology, product safety, environmental monitoring and security.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas/análisis , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Límite de Detección , Nanocables/química , Silicio/química , Estreptavidina/análisis
7.
Biomed Microdevices ; 20(4): 92, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30370472

RESUMEN

Here a micromachined flow cell with enhanced optical sensitivity is presented that allows high-throughput analysis of microdroplets. As a droplet flows through multiple concatenated measurement points, the rate of enzymatic reaction in the droplet can be fully characterized without stopping the flow. Since there is no cross-talk between the droplets, the flow cell is capable of continuously measuring biochemical assays in a droplet flow and thus is suitable to be used for continuous point-of-care diagnostics monitoring. This paper describes the design and operation of the device and its validation by application to the accurate and continuous quantification of glucose concentrations using an oxidase enzymatic assay. The flow cell forms an important component in the miniaturization of chemical and bio analyzers into portable or wearable devices.


Asunto(s)
Microtecnología/instrumentación , Fenómenos Ópticos , Técnicas Biosensibles , Glucosa/análisis , Límite de Detección , Impresión Tridimensional
8.
Lab Chip ; 18(13): 1903-1913, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29877549

RESUMEN

In droplet microfluidics, droplets have traditionally been considered discrete self-contained reaction chambers, however recent work has shown that dissolved solutes can transfer into the oil phase and migrate into neighbouring droplets under certain conditions. The majority of reports on such inter-droplet "crosstalk" have focused on surfactant-driven mechanisms, such as transport within micelles. While trialling a droplet-based system for quantifying nitrate in water, we encountered crosstalk driven by a very different mechanism: conversion of the analyte to a gaseous intermediate which subsequently diffused between droplets. Importantly we found that the crosstalk occurred predictably, could be experimentally quantified, and measurements rationally post-corrected. This showed that droplet microfluidic systems susceptible to crosstalk such as this can nonetheless be used for quantitative analysis.

9.
Environ Sci Technol ; 51(17): 9989-9995, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28771345

RESUMEN

Here, we present a new in situ microfluidic phosphate sensor that features an improved "phosphate blue" assay which includes polyvinylpyrrolidone in place of traditional surfactants-improving sensitivity and reducing temperature effects. The sensor features greater power economy and analytical performance relative to commercially available alternatives, with a mean power consumption of 1.8 W, a detection limit of 40 nM, a dynamic range of 0.14-10 µM, and an infield accuracy of 4 ± 4.5%. During field testing, the sensor was continuously deployed for 9 weeks in a chalk stream, revealing complex relations between flow rates and phosphate concentration that suggest changing dominance in phosphate sources. A distinct diel phosphorus signal was observed under low flow conditions, highlighting the ability of the sensor to decouple geochemical and biotic effects on phosphate dynamics in fluvial environments. This paper highlights the importance of high resolution in situ sensors in addressing the current gross under-sampling of aquatic environments.


Asunto(s)
Dispositivos Laboratorio en un Chip , Fosfatos/análisis , Bioensayo , Monitoreo del Ambiente , Límite de Detección , Microfluídica , Fósforo
10.
Lab Chip ; 17(6): 1149-1157, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28217768

RESUMEN

Droplet microfluidics has recently emerged as a new engineering tool for biochemical analysis of small sample volumes. Droplet generation is most commonly achieved by introducing aqueous and oil phases into a T-junction or a flow focusing channel geometry. This method produces droplets that are sensitive to changes in flow conditions and fluid composition. Here, we present an alternative approach using a simple peristaltic micropump to deliver the aqueous and oil phases in antiphase pulses resulting in a robust "chopping"-like method of droplet generation. This method offers controllable droplet dynamics, with droplet volumes solely determined by the pump design, and is insensitive to liquid properties and flow rates. Importantly, sequences of droplets with controlled composition can be hardcoded into the pump, allowing chemical operations such as titrations and dilutions to be easily achieved. The push-pull pump is compact and can continuously collect samples, generating droplets close to the sampling site and with short stabilisation time. We envisage that this robust droplet generation method is highly suited for continuous in situ sampling and chemical measurement, allowing droplet microfluidics to step out of the lab and into field-deployable applications.

11.
Analyst ; 141(11): 3266-73, 2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27007645

RESUMEN

Droplet microfluidics is ideally suited to continuous biochemical analysis, requiring low sample volumes and offering high temporal resolution. Many biochemical assays are based on enzymatic reactions, the kinetics of which can be obtained by probing droplets at multiple points over time. Here we present a miniaturised multi-detector flow cell to analyse enzyme kinetics in droplets, with an example application of continuous glucose measurement. Reaction rates and Michaelis-Menten kinetics can be quantified for each individual droplet and unknown glucose concentrations can be accurately determined (errors <5%). Droplets can be probed continuously giving short sample-to-result time (∼30 s) measurement. In contrast to previous reports of multipoint droplet measurement (all of which used bulky microscope-based setups) the flow cell presented here has a small footprint and uses low-powered, low-cost components, making it ideally suited for use in field-deployable devices.


Asunto(s)
Enzimas/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Sistemas de Atención de Punto , Bioensayo , Cinética
12.
Nat Commun ; 5: 3777, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24797034

RESUMEN

Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock.

13.
Adv Mater ; 25(13): 1813-21, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23135743

RESUMEN

In the past decade microreactors have emerged as a compelling technology for the highly controlled synthesis of colloidal nanocrystals, offering multiple advantages over conventional batch synthesis methods (including improved levels of control, reproducibility, and automation). Initial work in the field employed simple continuous phase reactors that manipulate miscible streams of a single reagent phase. Recently, however, there has been increasing interest in segmented flow reactors that use an immiscible fluid to divide the reagent phase into discrete slugs or droplets. Key advantages of segmented flow include the elimination of velocity dispersion (a significant cause of polydispersity) and greatly reduced susceptibility to reactor fouling. In this progress report we review the operation of segmented flow microreactors, their application to the controlled synthesis of nanocrystals, and some of the principal challenges that must be addressed before they can become a mainstream technology for the controlled production of nanomaterials.


Asunto(s)
Nanopartículas/química , Nanotecnología , Coloides/síntesis química , Coloides/química , Nanotecnología/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...