Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Traffic Inj Prev ; 22(6): 483-488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34180741

RESUMEN

OBJECTIVE: Researchers have found a variety of uses for the Hybrid III (HIII) dummy that fall beyond the scope of its original purpose as an automotive crash test dummy. Some of these expanded roles for the HIII introduce situations that were not envisioned in the dummy's original design parameters, such as a relatively rapid succession of tests or outdoor testing scenarios where temperature is not easily controlled. This study investigates how the axial compressive stiffness of the HIII lumbar spine component is affected by the duration of the time interval between tests. Further, it measures the effect of temperature on the compressive stiffness of the lumbar spine through a range of temperatures relevant to indoor and outdoor testing. METHODS: High-rate axial compression tests were run on a 50th percentile male HIII lumbar component in a materials testing machine. To characterize the effects of tests recovery intervals, between-test recovery was varied from 2 hours to 1 minute. To quantify temperature effects, environmental temperature conditions of 12.5°, 25°, and 37.5 °C were tested. RESULTS: During repeated compressive loading, the force levels decreased consistently across long and short rest intervals. Even after 2 hours of rest between tests, full viscoelastic recovery was not observed. Temperature effects were pronounced, resulting in compressive force differences of 261% over the range of 12.5° to 37.5 °C. Compared to the stiffness of the lumbar at 25 °C, the stiffness at 37.5 °C fell by 40%; at 12.5 °C, the stiffness more than doubled, increasing by 115%. CONCLUSIONS: A modest decrease in temperature can be sufficient to dramatically change the response and repeatability of the lumbar HIII component in compressive loading. The large magnitude of the temperature effect has severe implications in its ability to overwhelm the contributions of targeted test variables. These findings highlight the importance of controlling, monitoring and reporting temperature conditions during HIII testing, even in indoor laboratory environments.


Asunto(s)
Accidentes de Tránsito , Vértebras Lumbares , Maniquíes , Temperatura , Accidentes de Tránsito/estadística & datos numéricos , Humanos , Vértebras Lumbares/fisiología , Masculino , Fenómenos Mecánicos , Factores de Tiempo
2.
J Biomech ; 93: 167-176, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31358284

RESUMEN

The study of pediatric head injury relies heavily on the use of finite element models and child anthropomorphic test devices (ATDs). However, these tools, in the context of pediatric head injury, have yet to be validated due to a paucity of pediatric head response data. The goal of this study is to investigate the response and injury tolerance of the pediatric head to impact. Twelve pediatric heads were impacted in a series of drop tests. The heads were dropped onto five impact locations (forehead, occiput, vertex and right and left parietal) from drop heights of 15 and 30 cm. The head could freely fall without rotation onto a flat 19 mm thick platen. The impact force was measured using a 3-axis piezoelectric load cell attached to the platen. Age and drop height were found to be significant factors in the impact response of the pediatric head. The head acceleration (14%-15 cm; 103-30 cm), Head Injury Criterion (HIC) (253%-15 cm; 154%-30 cm) and impact stiffness (5800%-15 cm; 3755%-30 cm) when averaged across all impact locations increased with age from 33 weeks gestation to 16 years, while the pulse duration (66%-15 cm; 53%-30 cm) decreased with age. Increases in head acceleration, HIC and impact stiffness were also observed with increased drop height, while pulse duration decreased with increased drop height. One important observation was that three of the four cadaveric heads between the ages of 5-months and 22-months sustained fractures from the 15 cm and 30 cm drop heights. The 5-month-old sustained a right parietal linear fracture while the 11- and 22-month-old sustained diastatic linear fractures.


Asunto(s)
Traumatismos Craneocerebrales/patología , Fracturas Óseas/etiología , Aceleración , Adolescente , Factores de Edad , Fenómenos Biomecánicos , Cadáver , Niño , Preescolar , Femenino , Fracturas Óseas/patología , Humanos , Lactante , Masculino , Modelos Biológicos , Rotación
3.
J Sci Med Sport ; 22(6): 667-671, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30745221

RESUMEN

OBJECTIVES: Increased neck strength has been hypothesized to lower sports related concussion risk, but lacks experimental evidence. The goal is to investigate the role cervical muscle strength plays in blunt impact head kinematics and the biofidelity of common experimental neck conditions. We hypothesize head kinematics do not vary with neck activation due to low short term human head-to-neck coupling; because of the lack of coupling, free-head experimental conditions have higher biofidelity than Hybrid III necks. METHODS: Impacts were modeled using the Duke University Head and Neck Model. Four impact types were simulated with six neck conditions at eight impact positions. Peak resultant linear acceleration, peak resultant angular acceleration, Head Injury Criterion, and Head Impact Power compared concussion risk. To determine significance, maximum metric difference between activation states were compared to critical effect sizes (literature derived differences between mild and severe impact metrics). RESULTS: Maximum differences between activation conditions did not exceed critical effect sizes. Kinematic differences from impact location and strength can be ten times cervical muscle activation differences. Hybrid III and free-head linear acceleration metrics were 6±1.0% lower and 12±1.5% higher than relaxed condition respectively. Hybrid III and free-head angular acceleration metrics were 12±4.0% higher and 2±2.7% lower than relaxed condition respectively. CONCLUSIONS: Results from a validated neck model suggest increased cervical muscle force does not influence short term (<50ms) head kinematics in four athletically relevant scenarios. Impact location and magnitude influence head kinematics more than cervical muscle state. Biofidelic limitations of both Hybrid III and free-head experimental conditions must be considered.


Asunto(s)
Traumatismos en Atletas/prevención & control , Conmoción Encefálica/prevención & control , Modelos Biológicos , Fuerza Muscular , Cuello/fisiología , Aceleración , Fenómenos Biomecánicos , Humanos
4.
Clin Biomech (Bristol, Avon) ; 64: 90-97, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29544678

RESUMEN

BACKGROUND: Cervical bilateral facet dislocations are among the most devastating spine injuries in terms of likelihood of severe neurological sequelae. More than half of patients with tetraparesis had sustained some form of bilateral facet fracture dislocation. They can occur at any level of the sub-axial cervical spine, but predominate between C5 and C7. The mechanism of these injuries has long been thought to be forceful flexion of the chin towards the chest. This "hyperflexion" hypothesis comports well with intuition and it has become dogma in the clinical literature. However, biomechanical studies of the human cervical spine have had little success in producing this clinically common and devastating injury in a flexion mode of loading. METHODS: The purpose of this manuscript is to review the clinical and engineering literature on the biomechanics of bilateral facet dislocations and to describe the mechanical reasons for the causal role of compression, and the limited role of head flexion, in producing bilateral facet dislocations. FINDINGS: Bilateral facet dislocations have only been produced in experiments where compression is the primary loading mode. To date, no biomechanical study has produced bilateral facet dislocations in a whole spine by bending. Yet the notion that it is primarily a hyper-flexion injury persists in the clinical literature. INTERPRETATION: Compression and compressive buckling are the primary causes of bilateral facet dislocations. It is important to stop using the hyper-flexion nomenclature to describe this class of cervical spines injuries because it may have a detrimental effect on designs for injury prevention.


Asunto(s)
Vértebras Cervicales/lesiones , Luxaciones Articulares/fisiopatología , Traumatismos del Cuello/fisiopatología , Rango del Movimiento Articular , Traumatismos Vertebrales/fisiopatología , Traumatismos en Atletas/fisiopatología , Fenómenos Biomecánicos , Fuerza Compresiva , Fútbol Americano , Humanos , Fenómenos Mecánicos
5.
Traffic Inj Prev ; 19(6): 657-663, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29927682

RESUMEN

The Hybrid III (HIII) dummy is one of the most widely used anthropomorphic test devices (ATDs) in the world, and researchers have found a variety of uses for it outside of its original purpose as an automotive crash test dummy. These expanded roles have introduced situations outside the dummy's original design parameters, where a number of tests must be run in relatively rapid succession or where it may not be possible to control the temperature of the test environment. OBJECTIVE: This study has 2 aims. The first is to determine how the duration of the time interval between tests affects the axial compression performance of the HIII neck. The second is to quantify the effect of temperature on the neck's compressive stiffness through a range of temperatures relevant to indoor or outdoor testing. METHODS: To characterize the effects of different test conditions, a series of high-rate axial compressive tests was run on a 50th percentile male HIII neck component in a materials testing machine. Between-test recovery intervals were varied from 2 h to 1 min, and temperature conditions of 0, 12.5, 25, and 37.5 °C were tested. RESULTS: Though the duration of the recovery interval had little impact on the recorded force (less than 1%), the component did exhibit considerable strain creep over the course of the test. Temperature had a strong influence on the compressive stiffness of the component. Compared to the stiffness at 25 °C (near room temperature), the stiffness of the neck at 37.5 °C fell by 15%; at 0 °C, the stiffness more than doubled. CONCLUSIONS: This study demonstrates that though the duration of the recovery interval between tests has a small influence on neck stiffness, temperature effects should not be overlooked because they influence neck compressive stiffness considerably. The relationship between recorded force and temperature is well represented by exponential decay models. These findings highlight the importance of monitoring and controlling for temperature effects during all HIII testing.


Asunto(s)
Diseño de Equipo , Maniquíes , Cuello , Temperatura , Accidentes de Tránsito , Factores de Tiempo
7.
J Biomech Eng ; 139(6)2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28418508

RESUMEN

Advanced computational human body models (HBM) enabling enhanced safety require verification and validation at different levels or scales. Specifically, the motion segments, which are the building blocks of a detailed neck model, must be validated with representative experimental data to have confidence in segment and, ultimately, full neck model response. In this study, we introduce detailed finite element motion segment models and assess the models for quasi-static and dynamic loading scenarios. Finite element segment models at all levels in the lower human cervical spine were developed from scans of a 26-yr old male subject. Material properties were derived from the in vitro experimental data. The segment models were simulated in quasi-static loading in flexion, extension, lateral bending and axial rotation, and at dynamic rates in flexion and extension in comparison to previous experimental studies and new dynamic experimental data introduced in this study. Single-valued experimental data did not provide adequate information to assess the model biofidelity, while application of traditional corridor methods highlighted that data sets with higher variability could lead to an incorrect conclusion of improved model biofidelity. Data sets with continuous or multiple moment-rotation measurements enabled the use of cross-correlation for an objective assessment of the model and highlighted the importance of assessing all motion segments of the lower cervical spine to evaluate the model biofidelity. The presented new segment models of the lower cervical spine, assessed for range of motion and dynamic/traumatic loading scenarios, provide a foundation to construct a biofidelic model of the spine and neck, which can be used to understand and mitigate injury for improved human safety in the future.


Asunto(s)
Vértebras Cervicales/fisiología , Simulación por Computador , Movimiento , Fenómenos Biomecánicos , Humanos , Cinética , Modelos Biológicos , Soporte de Peso
8.
J Biomech ; 49(4): 558-64, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26874970

RESUMEN

Cervical spine injuries continue to be a costly societal problem. Future advancements in injury prevention depend on improved physical and computational models, which are predicated on a better understanding of the neck response during dynamic loading. Previous studies have shown that the tolerance of the neck is dependent on its initial position and its buckling behavior. This study uses a computational model to examine three important factors hypothesized to influence the loads experienced by vertebrae in the neck under compressive impact: muscle activation, torso constraints, and pre-flexion angle of the cervical spine. Since cadaver testing is not practical for large scale parametric analyses, these factors were studied using a previously validated computational model. On average, simulations with active muscles had 32% larger compressive forces and 25% larger shear forces-well in excess of what was expected from the muscle forces alone. In the short period of time required for neck injury, constraints on torso motion increased the average neck compression by less than 250N. The pre-flexion hypothesis was tested by examining pre-flexion angles from neutral (0°) to 64°. Increases in pre-flexion resulted in the largest increases in peak loads and the expression of higher-order buckling modes. Peak force and buckling modality were both very sensitive to pre-flexion angle. These results validate the relevance of prior cadaver models for neck injury and help explain the wide variety of cervical spine fractures that can result from ostensibly similar compressive loadings. They also give insight into the mechanistic differences between burst fractures and lower cervical spine dislocations.


Asunto(s)
Vértebras Cervicales/fisiología , Simulación por Computador , Fenómenos Mecánicos , Músculos/fisiología , Torso/fisiología , Fenómenos Biomecánicos , Vértebras Cervicales/fisiopatología , Fuerza Compresiva , Fracturas Óseas/fisiopatología , Humanos , Masculino , Músculos/fisiopatología , Traumatismos del Cuello/fisiopatología , Rango del Movimiento Articular , Traumatismos Vertebrales/fisiopatología , Torso/fisiopatología , Soporte de Peso
9.
J Biomech ; 48(14): 3766-75, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26476760

RESUMEN

Head injury is a persistent and costly problem for both children and adults. Globally, approximately 10 million people are hospitalized each year for head injuries. Knowing the structural properties of the head is important for modeling the response of the head in impact, and for providing insights into mechanisms of head injury. Hence, the goal of this study was to measure the sub-injurious structural stiffness of whole pediatric heads. 12 cadaveric pediatric (20-week-gestation to 16 years old) heads were tested in a battery of viscoelastic compression tests. The heads were compressed in both the lateral and anterior-posterior directions to 5% of gauge length at normalized deformation rates of 0.0005/s, 0.01/s, 0.1/s, and 0.3/s. Because of the non-linear nature of the response, linear regression models were used to calculate toe region (<2.5%) and elastic region (>2.5%) stiffness separately so that meaningful comparisons could be made across rate, age, and direction. The results showed that age was the dominant factor in predicting the structural stiffness of the human head. A large and statistically significant increase in the stiffness of both the toe region and the elastic region was observed with increasing age (p<0.0001), but no significant difference was seen across direction or normalized deformation rate. The stiffness of the elastic region increased from as low as 5 N/mm in the neonate to >4500 N/mm in the 16 year old. The changes in stiffness with age may be attributed to the disappearance of soft sutures and the thickening of skull bones with age.


Asunto(s)
Fuerza Compresiva , Traumatismos Craneocerebrales/fisiopatología , Cráneo/ultraestructura , Adolescente , Cadáver , Niño , Preescolar , Femenino , Cabeza , Humanos , Lactante , Modelos Lineales , Masculino
10.
Accid Anal Prev ; 72: 219-29, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25086440

RESUMEN

Given the high incidence of TBI, head injury has been studied extensively using both cadavers and anthropomorphic test devices (ATDs). However, few studies have benchmarked the response of ATD heads against human data. Hence, the objective of this study is to investigate the response of adult and ATD heads in impact, and to compare adult Hybrid III head responses to the adult head responses. In this study, six adult human heads and seven ATD heads were used to obtain impact properties. The heads were dropped from both 15cm and 30cm onto five impact locations: right and left parietal, forehead, occiput and vertex. One set of drops were performed on the human heads and up to four sets were carried out on the ATD heads. For each drop, the head was placed into a fine net and positioned to achieve the desired drop height and impact location. The head was then released to allow free fall without rotation onto a flat aluminum 34 -inch thick platen. The platen was attached to a three-axis piezoelectric load cell to measure the impact force. The peak resultant acceleration, head impact criterion (HIC) and impact stiffness were calculated using the force/time curve and drop mass. No statistical differences were found between the adult human heads and the adult Hybrid III head for 15cm and 30cm impacts (p>0.05). For the human heads, the mid-sagittal impact locations produced the highest HIC and peak acceleration values. The parietal impacts produced HICs and peak accelerations that were 26-48% lower than those from the mid-sagittal impacts. For the ATD heads, the acceleration and HIC values generally increased with represented age, except for the Q3, which produced HIC values up to higher than the other ATD heads. The impact responses of the adult Hybrid III onto different impact locations were found to adequately represent the impact stiffness of human adult head impacts from 30cm and below onto a rigid surface. The Q3 dummy consistently produced the highest HIC values of the ATD heads, and produced higher acceleration and HIC values than the adult human heads as well, which is contrary to neonatal data demonstrating that the head acceleration increases with age.


Asunto(s)
Aceleración , Cadáver , Traumatismos Craneocerebrales , Cabeza/fisiología , Maniquíes , Anciano , Fenómenos Biomecánicos , Lesiones Encefálicas , Niño , Preescolar , Humanos , Lactante , Masculino , Persona de Mediana Edad
11.
Traffic Inj Prev ; 15(4): 386-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24471363

RESUMEN

OBJECTIVE: Traumatic injuries are the leading cause of death of children aged 1-19 in the United States and are principally caused by motor vehicle collisions, with the head being the primary region injured. The neck, though not commonly injured, governs head kinematics and thus influences head injury. Vehicle improvements necessary to reduce these injuries are evaluated using anthropomorphic testing devices (ATDs). Current pediatric ATD head and neck properties were established by scaling adult properties using the size differences between adults and children. Due to the limitations of pediatric biomechanical research, computational models are the only available methods that combine all existing data to produce injury-relevant biofidelity specifications for ATDs. The purpose of this study is to provide the first frontal impact biofidelity corridors for neck flexion response of 6- and 10-year-olds using validated computational models, which are compared to the Hybrid III (HIII) ATD neck responses and the Mertz flexion corridors. METHODS: Our virtual 6- and 10-year-old head and neck multibody models incorporate pediatric biomechanical properties obtained from pediatric cadaveric and radiological studies, include the effect of passive and active musculature, and are validated with data including pediatric volunteer 3 g dynamic frontal impact responses. We simulate ATD pendulum tests-used to calibrate HIII neck bending stiffness-to compare the pediatric model and HIII ATD neck bending stiffness and to compare the model flexion bending responses with the Mertz scaled neck flexion corridors. Additionally, pediatric response corridors for pendulum calibration tests and high-speed (15 g) frontal impacts are estimated through uncertainty analyses on primary model variables, with response corridors calculated from the average ± SD response over 650 simulations. RESULTS AND CONCLUSIONS: The models are less stiff in dynamic anterioposterior bending than the ATDs; the secant stiffness of the 6- and 10-year-old models is 53 and 67 percent less than that of the HIII ATDs. The ATDs exhibit nonlinear stiffening and the models demonstrate nonlinear softening. Consequently, the models do not remain within the Mertz scaled flexion bending corridors. The more compliant model necks suggest an increased potential for head impact via larger head excursions. The pediatric anterioposterior bending corridors developed in this study are extensible to any frontal loading condition through calculation and sensitivity analysis. The corridors presented in this study are the first based on pediatric cadaveric data and provide the basis for future, more biofidelic, designs of 6- and 10-year-old ATD necks.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Simulación por Computador , Cabeza/fisiología , Maniquíes , Modelos Biológicos , Cuello/fisiología , Fenómenos Biomecánicos , Niño , Humanos , Masculino , Reproducibilidad de los Resultados
12.
Traffic Inj Prev ; 14 Suppl: S116-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23905513

RESUMEN

OBJECTIVE: During dynamic injury scenarios, such as motor vehicle crashes, neck biomechanics contribute to head excursion and acceleration, influencing head injuries. One important tool in understanding head and neck dynamics is computational modeling. However, realistic and stable muscle activations for major muscles are required to realize meaningful kinematic responses. The objective was to determine cervical muscle activation states for 6-year-old, 10-year-old, and adult 50th percentile male computational head and neck models. Currently, pediatric models including muscle activations are unable to maintain the head in an equilibrium position, forcing models to begin from nonphysiologic conditions. Recent work has realized a stationary initial geometry and cervical muscle activations by first optimizing responses against gravity. Accordingly, our goal was to apply these methods to Duke University's head-neck model validated using living muscle response and pediatric cadaveric data. METHODS: Activation schemes maintaining an upright, stable head for 22 muscle pairs were found using LS-OPT. Two optimization problems were investigated: a relaxed state, which minimized muscle fatigue, and a tensed activation state, which maximized total muscle force. The model's biofidelity was evaluated by the kinematic response to gravitational and frontal impact loading conditions. Model sensitivity and uncertainty analyses were performed to assess important parameters for pediatric muscle response. Sensitivity analysis was conducted using multiple activation time histories. These included constant activations and an optimal muscle activation time history, which varied the activation level of flexor and extensor groups, and activation initiation and termination times. RESULTS: Relaxed muscle activations decreased with increasing age, maintaining upright posture primarily through extensor activation. Tensed musculature maintained upright posture through coactivation of flexors and extensors, producing up to 32 times the force of the relaxed state. Without muscle activation, the models fell into flexion due to gravitational loading. Relaxed musculature produced 28.6-35.8 N of force to the head, whereas tensed musculature produced 450-1023 N. Pediatric model stiffnesses were most sensitive to muscle physiological cross-sectional area. CONCLUSIONS: Though muscular loads were not large enough to cause vertebral compressive failure, they would provide a prestressed state that could protect the vertebrae during tensile loading but might exacerbate risk during compressive loading. For example, in the 10-year-old, a load of 602 N was produced, though estimated compressive failure tolerance is only 2.8 kN. Including muscles and time-variant activation schemes is vital for producing biofidelic models because both vary by age. The pediatric activations developed represent physiologically appropriate sets of initial conditions and are based on validated adult cadaveric data.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Músculos del Cuello/fisiología , Cuello/fisiología , Accidentes de Tránsito/estadística & datos numéricos , Adulto , Fenómenos Biomecánicos , Cadáver , Niño , Cabeza/fisiología , Humanos , Masculino , Reproducibilidad de los Resultados
13.
Spine (Phila Pa 1976) ; 38(1): E1-12, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23104191

RESUMEN

STUDY DESIGN: Biomechanical tensile testing of perinatal, neonatal, and pediatric cadaveric cervical spines to failure. OBJECTIVE: To assess the tensile failure properties of the cervical spine from birth to adulthood. SUMMARY OF BACKGROUND DATA: Pediatric cervical spine biomechanical studies have been few due to the limited availability of pediatric cadavers. Therefore, scaled data based on human adult and juvenile animal studies have been used to augment the limited pediatric cadaver data. Despite these efforts, substantial uncertainty remains in our understanding of pediatric cervical spine biomechanics. METHODS: A total of 24 cadaveric osteoligamentous head-neck complexes, 20 weeks gestation to 18 years, were sectioned into segments (occiput-C2 [O-C2], C4-C5, and C6-C7) and tested in tension to determine axial stiffness, displacement at failure, and load-to-failure. RESULTS: Tensile stiffness-to-failure (N/mm) increased by age (O-C2: 23-fold, neonate: 22 ± 7, 18 yr: 504; C4-C5: 7-fold, neonate: 71 ± 14, 18 yr: 509; C6-C7: 7-fold, neonate: 64 ± 17, 18 yr: 456). Load-to-failure (N) increased by age (O-C2: 13-fold, neonate: 228 ± 40, 18 yr: 2888; C4-C5: 9-fold, neonate: 207 ± 63, 18 yr: 1831; C6-C7: 10-fold, neonate: 174 ± 41, 18 yr: 1720). Normalized displacement at failure (mm/mm) decreased by age (O-C2: 6-fold, neonate: 0.34 ± 0.076, 18 yr: 0.059; C4-C5: 3-fold, neonate: 0.092 ± 0.015, 18 yr: 0.035; C6-C7: 2-fold, neonate: 0.088 ± 0.019, 18 yr: 0.037). CONCLUSION: Cervical spine tensile stiffness-to-failure and load-to-failure increased nonlinearly, whereas normalized displacement at failure decreased nonlinearly, from birth to adulthood. Pronounced ligamentous laxity observed at younger ages in the O-C2 segment quantitatively supports the prevalence of spinal cord injury without radiographic abnormality in the pediatric population. This study provides important and previously unavailable data for validating pediatric cervical spine models, for evaluating current scaling techniques and animal surrogate models, and for the development of more biofidelic pediatric crash test dummies.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Vértebras Cervicales/fisiología , Resistencia a la Tracción/fisiología , Adolescente , Factores de Edad , Niño , Preescolar , Estudios de Cohortes , Femenino , Feto/fisiología , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Rango del Movimiento Articular/fisiología
14.
J Biomech ; 45(15): 2493-8, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22939291

RESUMEN

Traumatic Brain Injury (TBI) is a leading cause of mortality and morbidity for children in the United States. The unavailability of pediatric cadavers makes it difficult to study and characterize the mechanical behavior of the pediatric skull. Computer based finite element modeling could provide valuable insights, but the utility of these models depends upon the accuracy of cranial material property inputs. In this study, 47 samples from one six year-old human cranium were tested to failure via four point bending to study the effects of strain rate and the structure of skull bone on modulus of elasticity and failure properties for both cranial bone and suture. The results show that strain rate does not have a statistically meaningful effect on the mechanical properties of the six year-old skull over the range of strain rates studied (average low rate of 0.045 s(-1), average medium rate of 0.44 s(-1), and an average high rate of 2.2 s(-1)), but that these properties do depend on the growth patterns and morphology of the skull. The thickness of the bone was found to vary with structure. The bending stiffness (per unit width) for tri-layer bone (12.32±5.18 Nm(2)/m) was significantly higher than that of cortical bone and sutures (5.58±1.46 Nm(2)/m and 3.70±1.88 Nm(2)/m respectively). The modulus of elasticity was 9.87±1.24 GPa for cranial cortical bone and 1.10±0.53 GPa for sutures. The effective elastic modulus of tri-layer bone was 3.69±0.92 GPa. Accurate models of the pediatric skull should account for the differences amongst these three distinct tissues in the six year-old skull.


Asunto(s)
Cráneo/anatomía & histología , Fenómenos Biomecánicos , Lesiones Encefálicas , Niño , Módulo de Elasticidad , Femenino , Humanos , Cráneo/fisiología , Estrés Mecánico
15.
J Biomech ; 45(2): 386-9, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22119583

RESUMEN

Investigations of biomechanical properties of pediatric cadaver cervical spines subjected to tensile or bending modes of loading are generally limited by a lack of available tissue and limiting sample sizes, both per age and across age ranges. It is therefore important to develop fixation techniques capable of testing individual cadavers in multiple modes of loading to obtain more biomechanical data per subject. In this study, an experimental apparatus and fixation methodology was developed to accommodate cadaver osteoligamentous head-neck complexes from around birth (perinatal) to full maturation (adult) [cervical length: 2.5-12.5 cm; head breadth: 6-15 cm; head length: 6-19 cm] and sequentially test the whole cervical spine in tension, the upper cervical spine in bending and the upper cervical spine in tension. The experimental apparatus and the fixation methodology provided a rigid casting of the head during testing and did not compromise the skull. Further testing of the intact skull and sub-cranial material was made available due to the design of the apparatus and fixation techniques utilized during spinal testing. The stiffness of the experimental apparatus and fixation technique are reported to better characterize the cervical spine stiffness data obtained from the apparatus. The apparatus and fixation technique stiffness was 1986 N/mm. This experimental system provides a stiff and consistent platform for biomechanical testing across a broad age range and under multiple modes of loading.


Asunto(s)
Envejecimiento , Vértebras Cervicales/lesiones , Vértebras Cervicales/fisiopatología , Fijadores Externos , Modelos Biológicos , Cráneo , Adulto , Vértebras Cervicales/crecimiento & desarrollo , Vértebras Cervicales/patología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Soporte de Peso
16.
Accid Anal Prev ; 42(6): 1778-84, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20728629

RESUMEN

Helmets reduce the frequency and severity of head and brain injuries over a range of impact severities broader than those covered by the impact attenuation standards. Our goal was to document the impact attenuation performance of common helmet types over a wide range of impact speeds. Sixty-five drop tests were performed against the side of 10 different helmets onto a flat anvil at impact speeds of 0.9-10.1 m/s (energy=2-260J; equivalent drop heights of 0.04-5.2 m). Three non-approved beanie helmets performed poorly, with the worst helmet reaching a peak headform acceleration of 852g at 29J. Three full-face and one open-face helmet responded similarly from about 100g at 30J to between 292g and 344g at 256-260J. Three shorty style helmets responded like the full-face helmets up to 150J, above which varying degrees of foam densification appeared to occur. Impact restitution values varied from 0.19 to 0.46. A three-parameter model successfully captured the plateau and densification responses exhibited by the various helmets (R(2)=0.95-0.99). Helmet responses varied with foam thickness, foam material and possibly shell material, with the largest response differences consistent with either the presence/absence of a foam liner or the densification of the foam liner.


Asunto(s)
Accidentes de Tránsito/prevención & control , Lesiones Encefálicas/prevención & control , Traumatismos Craneocerebrales/prevención & control , Dispositivos de Protección de la Cabeza/normas , Motocicletas , Aceleración/efectos adversos , Fenómenos Biomecánicos , Seguridad de Productos para el Consumidor/normas , Diseño de Equipo , Humanos , Seguridad/normas
17.
Plast Reconstr Surg ; 124(6): 2076-2084, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19952665

RESUMEN

BACKGROUND: Surgical correction of cranial abnormalities, including craniosynostosis, requires knowledge of normal skull shape to appreciate dysmorphic variations. However, the inability of current anthropometric techniques to adequately characterize three-dimensional cranial shape severely limits morphologic study. The authors previously introduced three-dimensional vector analysis, a quantitative method that maps cranial form from computed tomography data. In this article, the authors report its role in the development and validation of a normative database of pediatric cranial morphology and in clinical analysis of craniosynostosis. METHODS: Normal pediatric craniofacial computed tomography data sets were acquired retrospectively from the Duke University Picture Archive and Communications System. Age increments ranging from 1 to 72 months were predetermined for scan acquisition. Three-dimensional vector analysis was performed on individual data sets, generating a set of point clouds. Averages and standard deviations for the age and gender bins of point clouds were used to create normative three-dimensional models. Anthropometric measurements from three-dimensional vector analysis models were compared with published matched data. Preoperative and postoperative morphologies of a sagittal synostosis case were analyzed using three-dimensional vector analysis and the normative database. RESULTS: Three- and two-dimensional representations were created to define age-incremental normative models. Length and width dimensions agreed with previously published data. Detailed morphologic analysis is provided for a case of sagittal synostosis by applying age- and gender-matched data. CONCLUSIONS: Three-dimensional vector analysis provides accurate, comprehensive description of cranial morphology with quantitative graphic output. The method enables development of an extensive pediatric normative craniofacial database. Future application of these data will facilitate analysis of cranial anomalies and assist with clinical assessment.


Asunto(s)
Cefalometría/métodos , Huesos Faciales/diagnóstico por imagen , Imagenología Tridimensional/métodos , Cráneo/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Factores de Edad , Antropometría/métodos , Preescolar , Suturas Craneales/anatomía & histología , Suturas Craneales/diagnóstico por imagen , Anomalías Craneofaciales/diagnóstico por imagen , Bases de Datos Factuales , Huesos Faciales/anatomía & histología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Interpretación de Imagen Radiográfica Asistida por Computador , Valores de Referencia , Sensibilidad y Especificidad , Cráneo/anatomía & histología
18.
J Biomech Eng ; 131(8): 081008, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19604020

RESUMEN

Tensile loading of the human cervical spine results from noncontact inertial loading of the head as well as mandibular and craniofacial impacts. Current vehicle safety standards include a neck injury criterion based on beam theory that uses a linear combination of the normalized upper cervical axial force and sagittal plane moment. This study examines this criterion by imposing combined axial tension and bending to postmortem human subject (PMHS) ligamentous cervical spines. Tests were conducted on 20 unembalmed PMHSs. Nondestructive whole cervical spine tensile tests with varying cranial end condition and anteroposterior loading location were used to generate response corridors for computational model development and validation. The cervical spines were sectioned into three functional spinal segments (Occiput-C2, C4-C5, and C6-C7) for measurement of tensile structural response and failure testing. The upper cervical spine (Occiput-C2) was found to be significantly less stiff, absorb less strain energy, and fail at higher loads than the lower cervical spine (C4-C5 and C6-C7). Increasing the moment arm of the applied tensile load resulted in larger head rotations, larger moments, and significantly higher tensile ultimate strengths in the upper cervical spine. The strength of the upper cervical spine when loaded through the head center of gravity (2417+/-215 N) was greater than when loaded over the occipital condyles (2032+/-250 N), which is not predicted by beam theory. Beam theory predicts that increased tensile loading eccentricity results in decreased axial failure loads. Analyses of the force-deflection histories suggest that ligament loading in the upper cervical spine depends on the amount of head rotation orientation, which may explain why the neck is stronger in combined tension and extension.


Asunto(s)
Vértebras Cervicales/fisiología , Movimientos de la Cabeza/fisiología , Ligamentos/fisiología , Modelos Biológicos , Rango del Movimiento Articular/fisiología , Anciano , Simulación por Computador , Humanos , Masculino , Persona de Mediana Edad , Estimulación Física/métodos , Resistencia a la Tracción , Torque
19.
Stapp Car Crash J ; 52: 107-34, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19085160

RESUMEN

Pediatric cervical spine biomechanics have been under-researched due to the limited availability of pediatric post-mortem human subjects (PMHS). Scaled data based on human adult and juvenile animal studies have been utilized to augment the limited pediatric PMHS data that exists. Despite these efforts, a significant void in pediatric cervical spine biomechanics remains. Eighteen PMHS osteoligamentous head-neck complexes ranging in age from 20 weeks gestational to 14 years were tested in tension. The tests were initially conducted on the whole cervical spine and then the spines were sectioned into three segments that included two lower cervical spine segments (C4-C5 and C6-C7) and one upper cervical spine segment (O-C2). After non-destructive tests were conducted, each segment was failed in tension. The tensile stiffness of the whole spines ranged from 5.3 to 70.1 N/mm. The perinatal and neonatal specimens had an ultimate strength for the upper cervical spine of 230.9 +/- 38.0 N and for the lower cervical spine of 212.8 +/- 60.9 and 187.1 +/- 39.4 N for the C4-C5 and C6-C7 segments, respectively. The lower cervical segments were significantly weaker and stiffer than the upper cervical spine segments in the older cohort. For the entire cohort of specimens, the stiffness of the upper cervical spine ranged from 7.1 to 199.0 N/mm. The tolerance ranged from 173.6 to 2960 N for the upper cervical spine and from 142 to 1757 N for the lower. There was a statistically significant increase in stiffness and strength with age. The results also suggest that juvenile animal surrogates estimate the stiffness of the human cervical spine fairly well; however, they may not provide accurate estimates of pediatric cervical spine strength.


Asunto(s)
Vértebras Cervicales/fisiología , Resistencia a la Tracción , Accidentes de Tránsito , Adolescente , Factores de Edad , Animales , Fenómenos Biomecánicos , Cadáver , Niño , Preescolar , Femenino , Feto , Humanos , Lactante , Recién Nacido , Ligamentos/fisiología , Masculino
20.
Ultrason Imaging ; 30(2): 95-111, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18939611

RESUMEN

The goal of this work is to develop and characterize an integrated indenter-ARFI (acoustic radiation force impulse) imaging system. This system is capable of acquiring matched datasets of ARFI images and stiffness profiles from ex vivo tissue samples, which will facilitate correlation of ARFI images of tissue samples with independently-characterized material properties. For large and homogeneous samples, the indenter can be used to measure the Young's moduli by using Boussinesq's solution for a load on the surface ofa semi-infinite isotropic elastic medium. Experiments and finite element method (FEM) models were designed to determine the maximum indentation depth and minimum sample size for accurate modulus reconstruction using this solution. Applying these findings, indentation measurements were performed on three calibrated commercial tissue-mimicking phantoms and the results were in good agreement with the calibrated stiffness. For heterogeneous tissue samples, indentation can be used independently to characterize relative stiffness variation across the sample surface, which can then be used to validate the stiffness variation in registered ARFI images. Tests were performed on heterogeneous phantoms and freshly-excised colon cancer specimens to detect the relative stiffness and lesion sizes using the combined system. Normalized displacement curves across the lesion surface were calculated and compared. Good agreement ofthe lesion profiles was observed between indentation and ARFI imaging.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/instrumentación , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Técnicas In Vitro , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...