Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(19): 31116-31123, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710639

RESUMEN

Short-pulse high-peak-power lasers are crucial laser sources for various applications such as non-thermal ultrafine material processing and eye-safe high-resolution remote sensing. Realizing such operation in a single semiconductor laser chip without amplifiers or external resonators is expected to contribute to the development of compact, affordable laser sources for such applications. In this paper, we demonstrate short-pulse high-peak-power photonic-crystal surface-emitting lasers based on simultaneous absorptive and radiative Q-switching. The proposed device induces an instantaneous and simultaneous decrease in both absorptive and out-of-plane radiation losses due to saturable absorption and self-evolution of the photonic band, respectively, which results in drastic Q-switching operation of the device. Based on this concept, we experimentally demonstrate short-pulse generation with 200-W-class peak power and a pulse width of < 30 ps. In addition, via pulse compression with dispersion compensation, we achieve an even higher peak power of ∼300 W with a shorter pulse width of ∼10 ps.

2.
Nat Commun ; 14(1): 50, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707512

RESUMEN

Ultrafast dynamics in nanophotonic materials is attracting increasing attention from the perspective of exploring new physics in fundamental science and expanding functionalities in various photonic devices. In general, such dynamics is induced by external stimuli such as optical pumping or voltage application, which becomes more difficult as the optical power to be controlled becomes larger owing to the increase in the energy required for the external control. Here, we demonstrate a concept of the self-evolving photonic crystal, where the spatial profile of the photonic band is dynamically changed through carrier-photon interactions only by injecting continuous uniform current. Based on this concept, we experimentally demonstrate short-pulse generation with a high peak power of 80 W and a pulse width of <30 ps in a 1-mm-diameter GaAs-based photonic crystal. Our findings on self-evolving carrier-photon dynamics will greatly expand the potential of nanophotonic materials and will open up various scientific and industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA