Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Clin Case Rep ; 11(10): e8023, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37830064

RESUMEN

Environmental risk factors for pancreatic cancer include acute and chronic pancreatitis, obesity, and tobacco use. Differentiating a pancreatic neoplasm in a patient with pancreatitis can be challenging due to their similar presentations. A 57-year-old African American man with a history of congestive heart failure, pancreatitis, and incomplete pancreas divisum presented with an epigastric abdominal pain that radiated to his back. Imaging showed necrotizing pancreatitis, a developing splenic infarct, and a mass at the pancreas tail. The patient was discharged with pain medications and was recommended follow-up imaging after resolution of his pancreatitis. He was readmitted to the emergency department 2 weeks later with recurrent acute abdominal pain. Computed tomography scan of abdomen and pelvis followed by magnetic resonance imaging and endoscopic ultrasound revealed an infiltrative pancreatic tail mass. Biopsy of the mass confirmed a locally advanced pancreatic tail adenocarcinoma. Chronic pancreatitis is associated with pancreatic cancer. Practitioners should be aware of the co-existence of chronic pancreatitis and pancreatic cancer, and the initial steps to evaluate a malignancy in chronic pancreatitis.

3.
Cancer Metab ; 11(1): 6, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202813

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Thus, there is an urgent need for safe and effective novel therapies. PDAC's excessive reliance on glucose metabolism for its metabolic needs provides a target for metabolic therapy. Preclinical PDAC models have demonstrated that targeting the sodium-glucose co-transporter-2 (SGLT2) with dapagliflozin may be a novel strategy. Whether dapagliflozin is safe and efficacious in humans with PDAC is unclear. METHODS: We performed a phase 1b observational study (ClinicalTrials.gov ID NCT04542291; registered 09/09/2020) to test the safety and tolerability of dapagliflozin (5 mg p.o./day × 2 weeks escalated to 10 mg p.o./day × 6 weeks) added to standard Gemcitabine and nab-Paclitaxel (GnP) chemotherapy in patients with locally advanced and/or metastatic PDAC. Markers of efficacy including Response Evaluation Criteria in Solid Tumors (RECIST 1.1) response, CT-based volumetric body composition measurements, and plasma chemistries for measuring metabolism and tumor burden were also analyzed. RESULTS: Of 23 patients who were screened, 15 enrolled. One expired (due to complications from underlying disease), 2 dropped out (did not tolerate GnP chemotherapy) during the first 4 weeks, and 12 completed. There were no unexpected or serious adverse events with dapagliflozin. One patient was told to discontinue dapagliflozin after 6 weeks due to elevated ketones, although there were no clinical signs of ketoacidosis. Dapagliflozin compliance was 99.4%. Plasma glucagon increased significantly. Although abdominal muscle and fat volumes decreased; increased muscle-to-fat ratio correlated with better therapeutic response. After 8 weeks of treatment in the study, partial response (PR) to therapy was seen in 2 patients, stable disease (SD) in 9 patients, and progressive disease (PD) in 1 patient. After dapagliflozin discontinuation (and chemotherapy continuation), an additional 7 patients developed the progressive disease in the subsequent scans measured by increased lesion size as well as the development of new lesions. Quantitative imaging assessment was supported by plasma CA19-9 tumor marker measurements. CONCLUSIONS: Dapagliflozin is well-tolerated and was associated with high compliance in patients with advanced, inoperable PDAC. Overall favorable changes in tumor response and plasma biomarkers suggest it may have efficacy against PDAC, warranting further investigation.

4.
J Rural Health ; 39(2): 477-487, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36482508

RESUMEN

PURPOSE: Most people living with HIV (PLH) in the United States are over age 50 and this sector of PLH continues to grow. Aging with HIV can be challenging due to comorbid medical conditions, mental health disorders, substance use, and lack of social and practical support. Additional challenges are faced by older PLH living in the rural United States, such as longer distances to health care, concerns over privacy and stigma, and social isolation. PLH in rural areas have higher mortality rates than urban PLH. We aimed to understand factors associated with HIV care engagement and quality of life in rural US adults over age 50. METHODS: We conducted a cross-sectional study to evaluate the association between patient-level factors and a combined outcome variable encompassing multiple aspects of care engagement. FINDINGS: Either online or on paper, 446 participants completed our survey. One-third of the participants (33%) were from the southern United States; one-third were women; one-third were non-White; and 24% completed the survey on paper. In multiple regression analysis, lower income, residing in the southern United States, lacking internet access at home, not having an HIV specialist provider, higher levels of stress, living alone, and longer distance to an HIV provider were all associated with lower engagement in HIV care. CONCLUSIONS: Our findings demonstrated multiple potential options for interventions that could improve care engagement, such as providing and enhancing access to technology for health care engagement and remotely delivering social support and mental health services. Research on such potential interventions is needed for older, rural PLH.


Asunto(s)
Infecciones por VIH , Servicios de Salud Mental , Humanos , Adulto , Estados Unidos/epidemiología , Femenino , Persona de Mediana Edad , Masculino , Infecciones por VIH/epidemiología , Infecciones por VIH/terapia , Infecciones por VIH/psicología , Calidad de Vida/psicología , Estudios Transversales , Atención a la Salud
5.
Radiographics ; 42(4): 1251-1264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35714039

RESUMEN

Prostate MRI is increasingly being used to make diagnoses and guide management for patients receiving definitive radiation treatment for prostate cancer. Radiologists should be familiar with the potential uses of prostate MRI in radiation therapy planning and delivery. Radiation therapy is an established option for the definitive treatment of localized prostate cancer. Stereotactic body radiation therapy (SBRT) is an external-beam radiation therapy method used to deliver a high dose of radiation to an extracranial target in the body, often in five or fewer fractions. SBRT is increasingly being used for prostate cancer treatment and has been recognized by the National Comprehensive Cancer Network as an acceptable definitive treatment regimen for low-, intermediate-, and high-risk prostate cancer. MRI is commonly used to aid in prostate radiation therapy. The authors review the uses of prostate MRI in SBRT treatment planning and delivery. Specific topics discussed include the use of prostate MRI for identification of and dose reduction to the membranous and prostatic urethra, which can decrease the risk of acute and late toxicities. MRI is also useful for identification and appropriate dose coverage of the prostate apex and areas of extraprostatic extension or seminal vesicle invasion. In prospective studies, prostate MRI is being validated for identification of and dose intensification to dominant intraprostatic lesions, which potentially can improve oncologic outcomes. It also can be used to evaluate the placement of fiducial markers and hydrogel spacers for radiation therapy planning and delivery. ©RSNA, 2022.


Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Próstata/patología , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía
6.
Front Neurosci ; 13: 53, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899211

RESUMEN

Loss of motor function is a common deficit following stroke insult and often manifests as persistent upper extremity (UE) disability which can affect a survivor's ability to participate in activities of daily living. Recent research suggests the use of brain-computer interface (BCI) devices might improve UE function in stroke survivors at various times since stroke. This randomized crossover-controlled trial examines whether intervention with this BCI device design attenuates the effects of hemiparesis, encourages reorganization of motor related brain signals (EEG measured sensorimotor rhythm desynchronization), and improves movement, as measured by the Action Research Arm Test (ARAT). A sample of 21 stroke survivors, presenting with varied times since stroke and levels of UE impairment, received a maximum of 18-30 h of intervention with a novel electroencephalogram-based BCI-driven functional electrical stimulator (EEG-BCI-FES) device. Driven by spectral power recordings from contralateral EEG electrodes during cued attempted grasping of the hand, the user's input to the EEG-BCI-FES device modulates horizontal movement of a virtual cursor and also facilitates concurrent stimulation of the impaired UE. Outcome measures of function and capacity were assessed at baseline, mid-therapy, and at completion of therapy while EEG was recorded only during intervention sessions. A significant increase in r-squared values [reflecting Mu rhythm (8-12 Hz) desynchronization as the result of attempted movements of the impaired hand] presented post-therapy compared to baseline. These findings suggest that intervention corresponds with greater desynchronization of Mu rhythm in the ipsilesional hemisphere during attempted movements of the impaired hand and this change is related to changes in behavior as a result of the intervention. BCI intervention may be an effective way of addressing the recovery of a stroke impaired UE and studying neuromechanical coupling with motor outputs. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02098265.

7.
Front Neurosci ; 12: 752, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30467461

RESUMEN

Stroke is a leading cause of persistent upper extremity (UE) motor disability in adults. Brain-computer interface (BCI) intervention has demonstrated potential as a motor rehabilitation strategy for stroke survivors. This sub-analysis of ongoing clinical trial (NCT02098265) examines rehabilitative efficacy of this BCI design and seeks to identify stroke participant characteristics associated with behavioral improvement. Stroke participants (n = 21) with UE impairment were assessed using Action Research Arm Test (ARAT) and measures of function. Nine participants completed three assessments during the experimental BCI intervention period and at 1-month follow-up. Twelve other participants first completed three assessments over a parallel time-matched control period and then crossed over into the BCI intervention condition 1-month later. Participants who realized positive change (≥1 point) in total ARAT performance of the stroke affected UE between the first and third assessments of the intervention period were dichotomized as "responders" (<1 = "non-responders") and similarly analyzed. Of the 14 participants with room for ARAT improvement, 64% (9/14) showed some positive change at completion and approximately 43% (6/14) of the participants had changes of minimal detectable change (MDC = 3 pts) or minimally clinical important difference (MCID = 5.7 points). Participants with room for improvement in the primary outcome measure made significant mean gains in ARATtotal score at completion (ΔARATtotal = 2, p = 0.028) and 1-month follow-up (ΔARATtotal = 3.4, p = 0.0010), controlling for severity, gender, chronicity, and concordance. Secondary outcome measures, SISmobility, SISadl, SISstrength, and 9HPTaffected, also showed significant improvement over time during intervention. Participants in intervention through follow-up showed a significantly increased improvement rate in SISstrength compared to controls (p = 0.0117), controlling for severity, chronicity, gender, as well as the individual effects of time and intervention type. Participants who best responded to BCI intervention, as evaluated by ARAT score improvement, showed significantly increased outcome values through completion and follow-up for SISmobility (p = 0.0002, p = 0.002) and SISstrength (p = 0.04995, p = 0.0483). These findings may suggest possible secondary outcome measure patterns indicative of increased improvement resulting from this BCI intervention regimen as well as demonstrating primary efficacy of this BCI design for treatment of UE impairment in stroke survivors. Clinical Trial Registration: ClinicalTrials.gov, NCT02098265.

8.
Front Hum Neurosci ; 9: 361, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157378

RESUMEN

Brain-computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 < p < 0.1) negative correlations with LI changes, while therapy frequency did not affect LI. Reductions in LI were then correlated (p ≤ 0.05) with increased SIS Activities of Daily Living scores and improved 9-HPT performance. Therefore, some behavioral changes may be reflected by brain changes sensitive to differences in BCI therapy administration, while others such as SIS Strength may be directly responsive to BCI therapy administration. Data preliminarily suggest that when using BCI in stroke rehabilitation, therapy frequency may be less important than dose and intensity.

9.
Front Hum Neurosci ; 9: 195, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25964753

RESUMEN

Tracking and predicting motor outcomes is important in determining effective stroke rehabilitation strategies. Diffusion tensor imaging (DTI) allows for evaluation of the underlying structural integrity of brain white matter tracts and may serve as a potential biomarker for tracking and predicting motor recovery. In this study, we examined the longitudinal relationship between DTI measures of the posterior limb of the internal capsule (PLIC) and upper-limb motor outcomes in 13 stroke patients (median 20-month post-stroke) who completed up to 15 sessions of intervention using brain-computer interface (BCI) technology. Patients' upper-limb motor outcomes and PLIC DTI measures including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were assessed longitudinally at four time points: pre-, mid-, immediately post- and 1-month-post intervention. DTI measures and ratios of each DTI measure comparing the ipsilesional and contralesional PLIC were correlated with patients' motor outcomes to examine the relationship between structural integrity of the PLIC and patients' motor recovery. We found that lower diffusivity and higher FA values of the ipsilesional PLIC were significantly correlated with better upper-limb motor function. Baseline DTI ratios were significantly correlated with motor outcomes measured immediately post and 1-month-post BCI interventions. A few patients achieved improvements in motor recovery meeting the minimum clinically important difference (MCID). These findings suggest that upper-limb motor recovery in stroke patients receiving BCI interventions relates to the microstructural status of the PLIC. Lower diffusivity and higher FA measures of the ipsilesional PLIC contribute toward better motor recovery in the stroke-affected upper-limb. DTI-derived measures may be a clinically useful biomarker in tracking and predicting motor recovery in stroke patients receiving BCI interventions.

10.
Front Neuroeng ; 7: 26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076886

RESUMEN

This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.

11.
Front Neuroeng ; 7: 31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120466

RESUMEN

The relationship of the structural integrity of white matter tracts and cortical activity to motor functional outcomes in stroke patients is of particular interest in understanding mechanisms of brain structural and functional changes while recovering from stroke. This study aims to probe these underlying mechanisms using diffusion tensor imaging (DTI) and fMRI measures. We examined the structural integrity of the posterior limb of the internal capsule (PLIC) using DTI and corticomotor activity using motor-task fMRI in stroke patients who completed up to 15 sessions of rehabilitation therapy using Brain-Computer Interface (BCI) technology. We hypothesized that (1) the structural integrity of PLIC and corticomotor activity are affected by stroke; (2) changes in structural integrity and corticomotor activity following BCI intervention are related to motor recovery; (3) there is a potential relationship between structural integrity and corticomotor activity. We found that (1) the ipsilesional PLIC showed significantly decreased fractional anisotropy (FA) values when compared to the contralesional PLIC; (2) lower ipsilesional PLIC-FA values were significantly associated with worse motor outcomes (i.e., ipsilesional PLIC-FA and motor outcomes were positively correlated.); (3) lower ipsilesional PLIC-FA values were significantly associated with greater ipsilesional corticomotor activity during impaired-finger-tapping-task fMRI (i.e., ipsilesional PLIC-FA and ipsilesional corticomotor activity were negatively correlated), with an overall bilateral pattern of corticomotor activity observed; and (4) baseline FA values predicted motor recovery assessed after BCI intervention. These findings suggest that (1) greater vs. lesser microstructural integrity of the ipsilesional PLIC may contribute toward better vs. poor motor recovery respectively in the stroke-affected limb and demand lesser vs. greater cortical activity respectively from the ipsilesional motor cortex; and that (2) PLIC-FA is a promising biomarker in tracking and predicting motor functional recovery in stroke patients receiving BCI intervention.

12.
Front Neuroeng ; 7: 25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071547

RESUMEN

Brain-computer interface (BCI) technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of nine stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) domains of Hand Function (HF) and Activities of Daily Living (ADL) were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC) to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p < 0.05). Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05) with changes in performance on ARAT (R (2) = 0.21), 9-HPT (R (2) = 0.41), SIS HF (R (2) = 0.27), and SIS ADL (R (2) = 0.40). Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.

13.
Front Neuroeng ; 7: 18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009491

RESUMEN

Therapies involving new technologies such as brain-computer interfaces (BCI) are being studied to determine their potential for interventional rehabilitation after acute events such as stroke produce lasting impairments. While studies have examined the use of BCI devices by individuals with disabilities, many such devices are intended to address a specific limitation and have been studied when this limitation or disability is present in isolation. Little is known about the therapeutic potential of these devices for individuals with multiple disabilities with an acquired impairment overlaid on a secondary long-standing disability. We describe a case in which a male patient with congenital deafness suffered a right pontine ischemic stroke, resulting in persistent weakness of his left hand and arm. This patient volunteer completed four baseline assessments beginning at 4 months after stroke onset and subsequently underwent 6 weeks of interventional rehabilitation therapy using a closed-loop neurofeedback BCI device with visual, functional electrical stimulation, and tongue stimulation feedback modalities. Additional assessments were conducted at the midpoint of therapy, upon completion of therapy, and 1 month after completing all BCI therapy. Anatomical and functional MRI scans were obtained at each assessment, along with behavioral measures including the Stroke Impact Scale (SIS) and the Action Research Arm Test (ARAT). Clinically significant improvements in behavioral measures were noted over the course of BCI therapy, with more than 10 point gains in both the ARAT scores and scores for the SIS hand function domain. Neuroimaging during finger tapping of the impaired hand also showed changes in brain activation patterns associated with BCI therapy. This case study demonstrates the potential for individuals who have preexisting disability or possible atypical brain organization to learn to use a BCI system that may confer some rehabilitative benefit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...