Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 18(8): e0289412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37611007

RESUMEN

BACKGROUND: INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop ventilation mode that uses capnography to adjust tidal volume (VT) and respiratory rate according to a user-set end-tidal CO2 (etCO2) target range. We compared sidestream versus mainstream capnography with this ventilation mode with respect to the quality of breathing in patients after cardiac surgery. METHODS: Single-center, single-blinded, non-inferiority, randomized clinical trial in adult patients scheduled for elective cardiac surgery that were expected to receive at least two hours of postoperative ventilation in the ICU. Patients were randomized 1:1 to closed-loop ventilation with sidestream or mainstream capnography. Each breath was classified into a zone based on the measured VT, maximum airway pressure, etCO2 and pulse oximetry. The primary outcome was the proportion of breaths spent in a predefined 'optimal' zone of ventilation during the first three hours of postoperative ventilation, with a non-inferiority margin for the difference in the proportions set at -20%. Secondary endpoints included the proportion of breaths in predefined 'acceptable' and 'critical' zones of ventilation, and the proportion of breaths with hypoxemia. RESULTS: Of 80 randomized subjects, 78 were included in the intention-to-treat analysis. We could not confirm the non-inferiority of closed-loop ventilation using sidestream with respect to the proportion of breaths in the 'optimal' zone (mean ratio 0.87 [0.77 to ∞]; P = 0.116 for non-inferiority). The proportion of breaths with hypoxemia was higher in the sidestream capnography group versus the mainstream capnography group. CONCLUSIONS: We could not confirm that INTELLiVENT-ASV using sidestream capnography is non-inferior to INTELLiVENT-ASV using mainstream capnography with respect to the quality of breathing in subjects receiving postoperative ventilation after cardiac surgery. TRIAL REGISTRATION: NCT04599491 (clinicaltrials.gov).


Asunto(s)
Capnografía , Procedimientos Quirúrgicos Cardíacos , Adulto , Humanos , Respiración , Volumen de Ventilación Pulmonar , Hipoxia
2.
J Clin Med ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38202214

RESUMEN

Uncertainty remains about the best level of intraoperative positive end-expiratory pressure (PEEP). An ongoing RCT ('DESIGNATION') compares an 'individualized high PEEP' strategy ('iPEEP')-titrated to the lowest driving pressure (ΔP) with recruitment maneuvers (RM), with a 'standard low PEEP' strategy ('low PEEP')-using 5 cm H2O without RMs with respect to the incidence of postoperative pulmonary complications. This report is an interim analysis of safety and feasibility. From September 2018 to July 2022, we enrolled 743 patients. Data of 698 patients were available for this analysis. Hypotension occurred more often in 'iPEEP' vs. 'low PEEP' (54.7 vs. 44.1%; RR, 1.24 (95% CI 1.07 to 1.44); p < 0.01). Investigators were compliant with the study protocol 285/344 patients (82.8%) in 'iPEEP', and 345/354 patients (97.5%) in 'low PEEP' (p < 0.01). Most frequent protocol violation was missing the final RM at the end of anesthesia before extubation; PEEP titration was performed in 99.4 vs. 0%; PEEP was set correctly in 89.8 vs. 98.9%. Compared to 'low PEEP', the 'iPEEP' group was ventilated with higher PEEP (10.0 (8.0-12.0) vs. 5.0 (5.0-5.0) cm H2O; p < 0.01). Thus, in patients undergoing general anesthesia for open abdominal surgery, an individualized high PEEP ventilation strategy is associated with hypotension. The protocol is feasible and results in clear contrast in PEEP. DESIGNATION is expected to finish in late 2023.

3.
J Crit Care ; 70: 154047, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35490503

RESUMEN

PURPOSE: Low tidal volume ventilation (LTVV) is associated with mortality in patients with acute respiratory distress syndrome. We investigated the association of LTVV with mortality in COVID-19 patients. METHODS: Secondary analysis of a national observational study in COVID-19 patients in the first wave of the pandemic. We compared COVID-19 patients that received LTVV, defined as controlled ventilation with a median tidal volume ≤ 6 mL/kg predicted body weight over the first 4 calendar days of ventilation, with patients that did not receive LTVV. The primary endpoint was 28-day mortality. In addition, we identified factors associated with use of LTVV. RESULTS: Of 903 patients, 294 (32.5%) received LTVV. Disease severity scores and ARDS classification was not different between the two patient groups. The primary endpoint, 28-day mortality, was met in 68 out of 294 patients (23.1%) that received LTVV versus in 193 out of 609 patients (31.7%) that did not receive LTVV (P < 0.001). LTVV was independently associated with 28-day mortality (HR, 0.68 (0.45 to 0.95); P = 0.025). Age, height, the initial tidal volume and continuous muscle paralysis was independently associated with use of LTVV. CONCLUSIONS: In this cohort of invasively ventilated COVID-19 patients, approximately a third of patients received LTVV. Use of LTVV was independently associated with reduced 28-day mortality. The initial tidal volume and continuous muscle paralysis were potentially modifiable factors associated with use of LTVV. These findings are important as they could help clinicians to recognize patients who are at risk of not receiving LTVV.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/terapia , Humanos , Unidades de Cuidados Intensivos , Parálisis , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Volumen de Ventilación Pulmonar/fisiología
4.
BMC Anesthesiol ; 22(1): 15, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996361

RESUMEN

BACKGROUND: The aim of this analysis is to determine geo-economic variations in epidemiology, ventilator settings and outcome in patients receiving general anesthesia for surgery. METHODS: Posthoc analysis of a worldwide study in 29 countries. Lower and upper middle-income countries (LMIC and UMIC), and high-income countries (HIC) were compared. The coprimary endpoint was the risk for and incidence of postoperative pulmonary complications (PPC); secondary endpoints were intraoperative ventilator settings, intraoperative complications, hospital stay and mortality. RESULTS: Of 9864 patients, 4% originated from LMIC, 11% from UMIC and 85% from HIC. The ARISCAT score was 17.5 [15.0-26.0] in LMIC, 16.0 [3.0-27.0] in UMIC and 15.0 [3.0-26.0] in HIC (P = .003). The incidence of PPC was 9.0% in LMIC, 3.2% in UMIC and 2.5% in HIC (P < .001). Median tidal volume in ml kg- 1 predicted bodyweight (PBW) was 8.6 [7.7-9.7] in LMIC, 8.4 [7.6-9.5] in UMIC and 8.1 [7.2-9.1] in HIC (P < .001). Median positive end-expiratory pressure in cmH2O was 3.3 [2.0-5.0]) in LMIC, 4.0 [3.0-5.0] in UMIC and 5.0 [3.0-5.0] in HIC (P < .001). Median driving pressure in cmH2O was 14.0 [11.5-18.0] in LMIC, 13.5 [11.0-16.0] in UMIC and 12.0 [10.0-15.0] in HIC (P < .001). Median fraction of inspired oxygen in % was 75 [50-80] in LMIC, 50 [50-63] in UMIC and 53 [45-70] in HIC (P < .001). Intraoperative complications occurred in 25.9% in LMIC, in 18.7% in UMIC and in 37.1% in HIC (P < .001). Hospital mortality was 0.0% in LMIC, 1.3% in UMIC and 0.6% in HIC (P = .009). CONCLUSION: The risk for and incidence of PPC is higher in LMIC than in UMIC and HIC. Ventilation management could be improved in LMIC and UMIC. TRIAL REGISTRATION: Clinicaltrials.gov , identifier: NCT01601223.


Asunto(s)
Anestesia General/métodos , Complicaciones Intraoperatorias/epidemiología , Enfermedades Pulmonares/epidemiología , Complicaciones Posoperatorias/epidemiología , Pobreza/estadística & datos numéricos , Respiración Artificial/estadística & datos numéricos , Adulto , Anciano , Países Desarrollados , Países en Desarrollo , Femenino , Humanos , Incidencia , Internacionalidad , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Medición de Riesgo
5.
Front Med (Lausanne) ; 8: 780005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35300177

RESUMEN

The purpose of this study was to compare and understand differences in the use of low tidal volume ventilation (LTVV) between females and males with acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). This is a post-hoc analysis of an observational study in invasively ventilated patients with ARDS related to COVID-19 in 22 ICUs in the Netherlands. The primary endpoint was the use of LTVV, defined as having received a median tidal volume (VT) ≤6 ml/kg predicted body weight (PBW) during controlled ventilation. A mediation analysis was used to investigate the impact of anthropometric factors, next to the impact of sex per se. The analysis included 934 patients, 251 females and 683 males. All the patients had ARDS, and there were no differences in ARDS severity between the sexes. On the first day of ventilation, females received ventilation with a higher median VT compared with males [6.8 (interquartile range (IQR) 6.0-7.6 vs. 6.3 (IQR 5.8-6.9) ml/kg PBW; p < 0.001]. Consequently, females received LTVV less often than males (23 vs. 34%; p = 0.003). The difference in the use of LTVV became smaller but persisted over the next days (27 vs. 36%; p = 0.046 at day 2 and 28 vs. 38%; p = 0.030 at day 3). The difference in the use LTVV was significantly mediated by sex per se [average direct effect of the female sex, 7.5% (95% CI, 1.7-13.3%); p = 0.011] and by differences in the body height [average causal mediation effect, -17.5% (-21.5 to -13.5%); p < 0.001], but not by the differences in actual body weight [average causal mediation effect, 0.2% (-0.8 to 1.2%); p = 0.715]. In conclusion, in this cohort of patients with ARDS related to COVID-19, females received LTVV less often than males in the first days of invasive ventilation. The difference in the use of LTVV was mainly driven by an anthropometric factor, namely, body height. Use of LTVV may improve by paying attention to correct titration of VT, which should be based on PBW, which is a function of body height.

6.
Anesth Analg ; 131(6): 1721-1729, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186160

RESUMEN

In the past, it was common practice to use a high tidal volume (VT) during intraoperative ventilation, because this reduced the need for high oxygen fractions to compensate for the ventilation-perfusion mismatches due to atelectasis in a time when it was uncommon to use positive end-expiratory pressure (PEEP) in the operating room. Convincing and increasing evidence for harm induced by ventilation with a high VT has emerged over recent decades, also in the operating room, and by now intraoperative ventilation with a low VT is a well-adopted approach. There is less certainty about the level of PEEP during intraoperative ventilation. Evidence for benefit and harm of higher PEEP during intraoperative ventilation is at least contradicting. While some PEEP may prevent lung injury through reduction of atelectasis, higher PEEP is undeniably associated with an increased risk of intraoperative hypotension that frequently requires administration of vasoactive drugs. The optimal level of inspired oxygen fraction (FIO2) during surgery is even more uncertain. The suggestion that hyperoxemia prevents against surgical site infections has not been confirmed in recent research. In addition, gas absorption-induced atelectasis and its association with adverse outcomes like postoperative pulmonary complications actually makes use of a high FIO2 less attractive. Based on the available evidence, we recommend the use of a low VT of 6-8 mL/kg predicted body weight in all surgery patients, and to restrict use of a high PEEP and high FIO2 during intraoperative ventilation to cases in which hypoxemia develops. Here, we prefer to first increase FIO2 before using high PEEP.


Asunto(s)
Cuidados Intraoperatorios/métodos , Pulmón/fisiología , Atención Perioperativa/métodos , Humanos , Respiración con Presión Positiva/métodos , Volumen de Ventilación Pulmonar/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...