Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Transfus ; 21(4): 327-336, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35969131

RESUMEN

BACKGROUND: Compared to room temperature (RT, 22-24°C) storage, refrigeration of platelet concentrates (PC) may provide advantages due to lower risks of bacterial growth and increased responsiveness of platelets. However, storage at cold temperature (CT, 2-6°C) may also strongly influence the plasmatic composition of PC. This study analysed the content of plasma in apheresis-derived platelet concentrates (APC). MATERIALS AND METHODS: APC were stored under blood bank conditions at CT or RT. On days 0 and 6, samples were drawn for analysis. Coagulation parameters comprised global coagulation assays, single factors or inhibitors. The distribution pattern of von Willebrand multimers was investigated by immunoblotting. Thrombin generation was assessed with a fluorescence assay. Immunological and clinical chemistry parameters were determined on automated analysers. RESULTS: After storage at CT, coagulation factors V, VII, IX or protein S activity are partially reduced, but less compromised than under RT. There was a large reduction in Factor VIII levels and this was similar at both temperatures. In contrast to RT, von Willebrand Factor (vWF) activity was remarkably decreased at CT, and this was accompanied by the shift from high molecular to low molecular weight multimers. Thrombin generation showed improved preservation at CT. Other plasma proteins like immunoglobulins were stable at both conditions. DISCUSSION: Refrigeration mediates a bivalent effect on plasmatic coagulation in APC. At CT, the partial reduction of labile coagulation factors is less emphasised. However, CT does not prevent Factor VIII depletion, but induces an additional loss of vWF activity by multimer cleavage. Preserved thrombin generation may indicate a higher hemostatic capacity for cold storage.


Asunto(s)
Eliminación de Componentes Sanguíneos , Hemostáticos , Humanos , Factor VIII/metabolismo , Factor de von Willebrand/análisis , Trombina/metabolismo , Factores de Coagulación Sanguínea/metabolismo , Plaquetas/metabolismo
2.
Sci Rep ; 12(1): 16910, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207457

RESUMEN

Storage of platelet concentrates (PC) at cold temperature (CT) is discussed as an alternative to the current standard of storage at room temperature (RT). Recently, we could show that cold-induced attenuation of inhibitory signaling is an important mechanism promoting platelet reactivity. For developing strategies in blood banking, it is required to elucidate the time-dependent onset of facilitated platelet activation. Thus, freshly prepared platelet-rich-plasma (PRP) was stored for 1 and 2 h at CT (2-6 °C) or at RT (20-24 °C), followed by subsequent comparative analysis. Compared to RT, basal and induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation levels were decreased under CT within 1 h by approximately 20%, determined by Western blot analysis and flow cytometry. Concomitantly, ADP- and collagen-induced threshold aggregation values were enhanced by up to 30-40%. Furthermore, platelet-covered areas on collagen-coated slides and aggregate formation under flow conditions were increased after storage at CT, in addition to induced activation markers. In conclusion, a time period of 1-2 h for refrigeration is sufficient to induce an attenuation of inhibitory signaling, accompanied with an enhancement of platelet responsiveness. Short-term refrigeration may be considered as a rational approach to obtain PC with higher functional reactivity for the treatment of hemorrhage.


Asunto(s)
Agregación Plaquetaria , Refrigeración , Adenosina Difosfato/farmacología , Plaquetas , Conservación de la Sangre , Colágeno/farmacología
3.
TH Open ; 6(3): e156-e167, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36046205

RESUMEN

Background Like immune cells, platelets express toll-like receptors (TLRs) on their surface membrane. TLR2 and TLR4 are able to recognize bacterial antigens and have the potential to influence hemostatic functions and classical intracellular signaling pathways. This study investigated the role of TLR2 and TLR4 for immune-related functions in human platelets. Materials and Methods Washed platelets and neutrophils were prepared from fresh human peripheral blood. Basal-, Pam3CSK4- (as TLR2 agonist) and Lipopolysaccharides (LPS; as TLR4 agonist) -induced CD62P expression, fibrinogen binding and TLR2 or TLR4 expression, intracellular reactive oxygen species (ROS) production in H 2 DCFDA-loaded platelets and uptake of fluorescence-labeled TLR ligands, and fluorophore-conjugated fibrinogen were evaluated by flow cytometry. Analysis of platelet-neutrophil complexes was performed after coincubation of washed platelets and neutrophils in the presence and absence of TLR2 or TLR4 agonists on poly-L-lysine coated surfaces, followed by immunostaining and immunofluorescence imaging. Results Pam3CSK4 rapidly and transiently increased TLR2 and TLR4 expression. Over the course of 30 minutes after activation with Pam3CSK4 and LPS, the expression of both receptors decreased. Pam3CSK4-stimulated intracellular ROS production and the uptake of TLR ligands or fibrinogen much stronger than LPS. Besides, TLR4 activation led to a significant increase of platelet-neutrophil contacts. Conclusion Stimulation leads to rapid mobilization of TLR2 or TLR4 to the platelet surface, presumably followed by receptor internalization along with bound TLR ligands. After activation, platelet TLR2 and TLR4 mediate different immune-related reactions. In particular, TLR2 induces intracellular responses in platelets, whereas TLR4 initiates interactions with other immune cells such as neutrophils.

4.
Vox Sang ; 117(3): 393-398, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34545576

RESUMEN

BACKGROUND AND OBJECTIVES: Immunoadsorptions (IA) are used to remove autoantibodies from the plasma in autoimmune disorders. In this study, we evaluated the effects of a single-use, recombinant staphylococcal protein A-based immunoadsorber on blood composition of the patient. MATERIALS AND METHODS: In a cohort of patients with myasthenia gravis or stiff-person syndrome, essential parameters of blood cell count, coagulation, clinical chemistry or plasma proteins and immunoglobulins (Ig) were measured before and after IA (n = 11). RESULTS: In average, IA reduced the levels of total IgG, IgG1, IgG2 and IgG4 by approximately 60%, the acetylcholine receptor autoantibody levels by more than 70%. IgG3, IgA or IgM were diminished to a lower extent. In contrast to fibrinogen or other coagulation factors, the column markedly removed vitamin K-dependent coagulation factors II, VII, IX and X by approximately 40%-70%. Accordingly, international normalized ratio and activated partial thromboplastin time were increased after IA by 59.1% and 32.7%, respectively. Coagulation tests almost returned to baseline values within 24 h. Blood cell count, electrolytes, total protein or albumin were not essentially affected. No clinical events occurred. CONCLUSION: The single-use, multiple-pass protein A adsorber column is highly efficient to remove IgG1, IgG2 and IgG4 or specific acetylcholine receptor autoantibodies from the plasma. Coagulation parameters should be monitored, since the column has the capacity to largely reduce vitamin K-dependent factors.


Asunto(s)
Miastenia Gravis , Proteína Estafilocócica A , Autoanticuerpos , Humanos , Inmunoglobulina G , Miastenia Gravis/terapia , Receptores Colinérgicos
5.
Vascul Pharmacol ; 138: 106830, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33422688

RESUMEN

INTRODUCTION: Although platelets contain a full proteasome system, its role in platelet function is not completely understood yet. Since the proteasome system may be involved in time-delayed processes, platelet responsiveness was investigated after long-term, bortezomib-mediated proteasome inhibition. MATERIALS AND METHODS: Citrate-anticoagulated whole blood was stored with 5 nM and 1 µM bortezomib for 24 h. Consecutively, aggregation was measured by light transmission in platelet-rich-plasma (PRP). Flow cytometry was performed to determine phosphorylation levels of the vasodilator-stimulated phosphoprotein (VASP), fibrinogen binding, PAC1-antibody binding and purinergic receptor expression in PRP, P2Y12 activity or glycoprotein (GP) Ib and IIb expression in whole blood. P2Y1 and P2X1 activities were assessed by calcium flux-induced fluorescence in washed platelets. Using PRP, adherent platelets on fibrinogen-, collagen- and ristocetin-coated surfaces were visualized and quantified by immunostaining. RESULTS: Under bortezomib, VASP phosphorylation was less inducible and nitric oxide-induced inhibition of fibrinogen binding was slightly reduced. Proteasome inhibition did not tamper adenosine diphosphate-mediated aggregation or purinergic receptor expression and activity. Induced expression of activated fibrinogen receptors and fibrinogen binding were not significantly influenced by incubation with bortezomib for 24 h. Aggregation values with threshold agonist concentrations were increased under bortezomib. Despite unchanged GPIb expression, bortezomib-treated platelets showed enhanced adhesion on coated surfaces. CONCLUSIONS: In platelets incubated for 24 h, bortezomib mediates a slight attenuation of inhibitory signaling, associated with facilitated platelet aggregation using threshold agonist concentrations and enhanced adhesion on agonist-coated surfaces.


Asunto(s)
Plaquetas/efectos de los fármacos , Bortezomib/farmacología , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Plaquetas/enzimología , Moléculas de Adhesión Celular/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Receptores Fibrinógenos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transducción de Señal , Factores de Tiempo
6.
Nucleic Acids Res ; 49(6): 3461-3489, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33398329

RESUMEN

LARP1 is a key repressor of TOP mRNA translation. It binds the m7Gppp cap moiety and the adjacent 5'TOP motif of TOP mRNAs, thus impeding the assembly of the eIF4F complex on these transcripts. mTORC1 controls TOP mRNA translation via LARP1, but the details of the mechanism are unclear. Herein we elucidate the mechanism by which mTORC1 controls LARP1's translation repression activity. We demonstrate that mTORC1 phosphorylates LARP1 in vitro and in vivo, activities that are efficiently inhibited by rapamycin and torin1. We uncover 26 rapamycin-sensitive phospho-serine and -threonine residues on LARP1 that are distributed in 7 clusters. Our data show that phosphorylation of a cluster of residues located proximally to the m7Gppp cap-binding DM15 region is particularly sensitive to rapamycin and regulates both the RNA-binding and the translation inhibitory activities of LARP1. Our results unravel a new model of translation control in which the La module (LaMod) and DM15 region of LARP1, both of which can directly interact with TOP mRNA, are differentially regulated: the LaMod remains constitutively bound to PABP (irrespective of the activation status of mTORC1), while the C-terminal DM15 'pendular hook' engages the TOP mRNA 5'-end to repress translation, but only in conditions of mTORC1 inhibition.


Asunto(s)
Autoantígenos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , Ribonucleoproteínas/metabolismo , Secuencias de Aminoácidos , Autoantígenos/química , Células HEK293 , Humanos , Naftiridinas/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica , Ribonucleoproteínas/química , Serina/metabolismo , Sirolimus/farmacología , Treonina/metabolismo , Tirosina/metabolismo , Antígeno SS-B
7.
Cell Signal ; 76: 109817, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33132157

RESUMEN

In addition to haemostasis, platelets play an essential role in mechanisms of inflammation and in immunological reactions. Platelets express various toll-like receptors (TLR) on their surface, among them TLR2 and TLR4, which are important for the recognition of bacterial patterns. This study compared TLR2- and TLR4-dependent platelet signalling and their effect on platelet function. Platelet-rich-plasma and washed platelets were prepared from peripheral blood samples of healthy donors. Pam3CSK4 or LPS (lipopolysaccharides from Escherichia coli) were used for stimulation of TLR2 and TLR4. Intracellular signalling pathways were investigated by Western blot. TLR2- and TLR4-mediated specific transcription factor DNA binding activity was measured by the nuclear factor kappa B (NFκB) transcription factor assay kit. Platelet adhesion and glycoprotein Ib function were assessed by immunofluorescence staining and analysis of ristocetin-induced agglutination. Both, Pam3CSK4 and LPS were able to induce NFκB-mediated and classical activating platelet signalling with a higher stimulatory capacity of TLR2. In addition, TLR2 and TLR4 activation led to a similar activation of inhibitory pathways. In contrast to TLR2, stimulation of TLR4 resulted in decreased Akt/protein kinase B phosphorylation conditioned by enhanced protein phosphatase 2A activity. TLR4-mediated signalling induced platelet adhesion and facilitated ristocetin-induced platelet agglutination. In conclusion, Pam3CSK4 directly induces aggregation via classical activation cascades, whereas LPS enhances platelet adhesion and glycoprotein receptor Ib-dependent platelet agglutination.


Asunto(s)
Plaquetas/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Voluntarios Sanos , Humanos , FN-kappa B/metabolismo , Adhesividad Plaquetaria , Agregación Plaquetaria
8.
TH Open ; 4(3): e163-e172, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32803122

RESUMEN

Introduction Cold storage of platelets is considered to contribute to lower risk of bacterial growth and to more efficient hemostatic capacity. For the optimization of storage strategies, it is required to further elucidate the influence of refrigeration on platelet integrity. This study focused on adenosine diphosphate (ADP)-related platelet responsiveness. Materials and Methods Platelets were prepared from apheresis-derived platelet concentrates or from peripheral whole blood, stored either at room temperature or at 4°C. ADP-induced aggregation was tested with light transmission. Activation markers, purinergic receptor expression, and P2Y12 receptor function were determined by flow cytometry. P2Y1 and P2X1 function was assessed by fluorescence assays, cyclic nucleotide concentrations by immunoassays, and vasodilator-stimulated phosphoprotein (VASP)-phosphorylation levels by Western blot analysis. Results In contrast to room temperature, ADP-induced aggregation was maintained under cold storage for 6 days, associated with elevated activation markers like fibrinogen binding or CD62P expression. Purinergic receptor expression was not essentially different, whereas P2Y1 function deteriorated rapidly at cold storage, but not P2Y12 activity. Inhibitory pathways of cold-stored platelets were characterized by reduced responses to nitric oxide and prostaglandin E1. Refrigeration of citrated whole blood also led to the attenuation of induced inhibition of platelet aggregation, detectable within 24 hours. Conclusion ADP responsiveness is preserved under cold storage for 6 days due to stable P2Y12 activity and concomitant disintegration of inhibitory pathways enabling a higher reactivity of stored platelets. The ideal storage time at cold temperature for the highest hemostatic effect of platelets should be evaluated in further studies.

9.
TH Open ; 3(2): e94-e102, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31249988

RESUMEN

Background Like immune cells, platelets express the repertoire of toll-like receptors (TLR), among them TLR2 and TLR4, which are important for the recognition of bacterial patterns. Receptor-mediated functional effects in platelets have been investigated, but reliable conclusions are tampered due to heterogeneous study designs with variable platelet preparation methods. This study compares TLR2- and TLR4-dependent platelet responsiveness in platelet-rich plasma (PRP) and in washed platelets (WPs). Material and Methods Fresh peripheral blood samples from healthy donors served for the preparation of PRP and WP. Basal and agonist-stimulated TLR2 and TLR4 expression levels were evaluated by flow cytometry. Light transmission aggregometry was used to investigate functional effects of TLR2 and TLR4 stimulation with Pam3CSK4 or LPS (lipopolysaccharides from Escherichia coli ) as ligands. The capacity of chemokine release was determined by immunoassays. Results Pam3CSK4 and LPS (in combination with thrombin) were able to induce aggregation in WP, but not in PRP, with threshold concentrations of 15 µg/mL. Basal expression levels of TLR2 and TLR4 were higher in WP than in PRP, increasing several-fold rapidly and persistently upon platelet activation with potent agonists. Pam3CSK4 (15 µg/mL) or LPS led to the submaximal release of RANTES, PF4, PDGF, NAP-2, and sCD40L from WP. In PRP, secretory effects are less pronounced for RANTES, PDGF, or PF4, and not detectable for NAP-2 or sCD40L. Conclusion The effects mediated by TLR2 and TLR4 stimulation are dependent on platelet preparation, an important issue for experimental designs and for manufacturing of platelet concentrates in transfusion medicine.

10.
Elife ; 62017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28379136

RESUMEN

The 5'terminal oligopyrimidine (5'TOP) motif is a cis-regulatory RNA element located immediately downstream of the 7-methylguanosine [m7G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m7GTP), and a capped cytidine (m7GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4F Eucariótico de Iniciación/antagonistas & inhibidores , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN , ARN Mensajero/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Inmunoprecipitación de Cromatina , Cristalografía por Rayos X , Regulación de la Expresión Génica , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Estabilidad del ARN , Antígeno SS-B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...