Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(23): 15376-15384, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175518

RESUMEN

Emergent macrophyte species selection is critical for the effectiveness of nature-based engineered solutions aiming to address excess nutrient concentrations in freshwater ecosystems. Yet, the mechanisms with which macrophytes enhance nutrient retention need to be further understood. Here, we compared nutrient retention among 12 artificial flumes fed with effluents from a wastewater treatment plant and subjected to four treatments: absence of macrophytes (control) and presence of three different macrophyte species (Iris pseudacorus L., Phragmites australis L., and Schoenoplectus lacustris L.). We estimated the net and gross nutrient uptake based on the longitudinal profiles of ambient concentrations and on pulse injections of ammonium (NH4+) and soluble reactive phosphorus. Further, we investigated the influence of subsurface hydrological retention, attributed to the architectural differences in the roots of these macrophytes, on nutrient retention. Results showed a species-specific effect of macrophytes on nutrient retention and confirmed root-associated subsurface hydrological retention as a driving factor. Schoenoplectus showed both high net and gross NH4+ uptake, thereby being the most effective species to address N loading, compared to Iris and Phragmites. This work contributes to improve our mechanistic understanding of the role of emergent macrophytes on nutrient retention in aquatic environments.


Asunto(s)
Ecosistema , Nitrógeno , Agua Dulce , Nutrientes , Fósforo
2.
J Environ Manage ; 252: 109585, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600688

RESUMEN

In the Mediterranean region, water scarcity compromises stream water quality particularly downstream of wastewater treatment plants (WWTP). We tested the potential of four helophyte species to reduce dissolved inorganic nitrogen (N) and phosphorus (P) from WWTP effluents. We conducted an 11-month mesocosm experiment to assess differences in N and P content among plant compartments and among species. Moreover, we quantified the relative contribution of above and belowground parts of the plants to N and P retention. The experiment was conducted at the Urban River Laboratory (www.urbanriverlab.com) in artificial channels (12 m long x 0.6 m wide x 0.4 m deep) planted with monospecific stands of Iris pseudoacorus, Typha angustifolia, Phragmites australis and Scirpus lacustris. Channels (three replicates per species) received water from the WWTP effluent, which flowed at a constant rate of 5 L min-1 through the sub-surface. The helophytes were planted in November 2014 and biomass standing stocks of carbon (C), N and P were measured in October 2015 at the time of maximum plant biomass. Differences in the concentration of N and P were larger among plant compartments than among species. The highest N concentration was measured in leaves while rhizomes showed the highest P concentration. The total plant biomass varied greatly among species from 11.4 to 4.6 Kg DW m-2 for Iris and Scirpus, respectively. Iris accumulated the highest amount of N (256 g N m-2) and P (27 g P m-2) in biomass. Plants retained from 8% (Scirpus) to 19% (Iris) of total dissolved inorganic N inputs to the channels (10.4 kg N) during the experiment, and from 6% (Phragmites) to 14% (Iris) of total dissolved inorganic P inputs (1.3 kg P). This study provides quantitative evidence to water managers of the potential role of helophytes to improve water quality in freshwater ecosystems receiving water from WWTP effluents.


Asunto(s)
Typhaceae , Aguas Residuales , Biomasa , Ecosistema , Nitrógeno , Fósforo
3.
Sci Total Environ ; 599-600: 1667-1676, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28535595

RESUMEN

Wastewater treatment plant (WWTP) effluents are sources of dissolved organic carbon (DOC) and inorganic nitrogen (DIN) to receiving streams, which can eventually become saturated by excess of DIN. Aquatic plants (i.e., helophytes) can modify subsurface water flowpaths as well as assimilate nutrients and enhance microbial activity in the rhizosphere, yet their ability to increase DIN transformation and removal in WWTP-influenced streams is poorly understood. We examined the influence of helophytes on DIN removal along subsurface water flowpaths and how this was associated with DOC removal and labile C availability. To do so, we used a set of 12 flow-through flumes fed with water from a WWTP effluent. The flumes contained solely sediments or sediments with helophytes. Presence of helophytes in the flumes enhanced both DIN and DOC removal. Experimental addition of a labile C source into the flumes resulted in a high removal of the added C within the first meter of the flumes. Yet, no concomitant increases in DIN removal were observed. Moreover, results from laboratory assays showed significant increases in the potential denitrifying enzyme activity of sediment biofilms from the flumes when labile C was added; suggesting denitrification was limited by C quality. Together these results suggest that lack of DIN removal response to the labile C addition in flumes was likely because potential increases in denitrification by biofilms from sediments were counterbalanced by high rates of mineralization of dissolved organic matter. Our results highlight that helophytes can enhance DIN removal in streams receiving inputs from WWTP effluents; and thus, they can become a relevant bioremediation tool in WWTP-influenced streams. However, results also suggest that the quality of DOC from the WWTP effluent can influence the N removal capacity of these systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA