Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38391651

RESUMEN

With the increasing use of renewable energy resources for the power grid, the need for long-term storage technologies, such as power-to-gas systems, is growing. Biomethanation provides the opportunity to store energy in the form of the natural gas-equivalent biomethane. This study investigates a novel plug flow reactor that employs a helical static mixer for the biological methanation of hydrogen and carbon dioxide. In tests, the reactor achieved an average methane production rate of 2.5 LCH4LR∗d (methane production [LCH4] per liter of reactor volume [LR] per day [d]) with a maximum methane content of 94%. It demonstrated good flexibilization properties, as repeated 12 h downtimes did not negatively impact the process. The genera Methanothermobacter and Methanobacterium were predominant during the initial phase, along with volatile organic acid-producing, hydrogenotrophic, and proteolytic bacteria. The average ratio of volatile organic acid to total inorganic carbon increased to 0.52 ± 0.04, while the pH remained stable at an average of pH 8.1 ± 0.25 from day 32 to 98, spanning stable and flexible operation modes. This study contributes to the development of efficient flexible biological methanation systems for sustainable energy storage and management.

2.
Environ Sci Technol ; 58(5): 2346-2359, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267392

RESUMEN

Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus-host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD.


Asunto(s)
Antibacterianos , Bacteriófagos , Antibacterianos/farmacología , Anaerobiosis , Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Farmacorresistencia Microbiana/genética , Bacteriófagos/genética , Metagenómica
3.
FEMS Microbiol Rev ; 47(2)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36941122

RESUMEN

Power-to-X (P2X) technologies will play a more important role in the conversion of electric power to storable energy carriers, commodity chemicals and even food and feed. Among the different P2X technologies, microbial components form cornerstones of individual process steps. This review comprehensively presents the state-of-the-art of different P2X technologies from a microbiological standpoint. We are focusing on microbial conversions of hydrogen from water electrolysis to methane, other chemicals and proteins. We present the microbial toolbox needed to gain access to these products of interest, assess its current status and research needs, and discuss potential future developments that are needed to turn todays P2X concepts into tomorrow's technologies.


Asunto(s)
Electrólisis , Hidrógeno , Hidrógeno/metabolismo
4.
Bioengineering (Basel) ; 9(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36421079

RESUMEN

The effects of the inoculum origin, temperature or operational changes on ex situ biomethanation by complex microbial communities have been investigated; however, it remains unclear how the diversity of the inoculum influences the process and its stability. We explored the effect of microbial diversity of four inocula (coded as PF, WW, S37 and Nrich) on methane production, process stability and the formation of volatile fatty acids as by-products. The highest methane amounts produced were 3.38 ± 0.37 mmol, 3.20 ± 0.07 mmol, 3.07 ± 0.27 mmol and 3.14 ± 0.06 mmol for PF, WW, S37 and Nrich, respectively. The highest acetate concentration was found in less diverse cultures (1679 mg L-1 and 1397 mg L-1 for S37 and Nrich, respectively), whereas the acetate concentrations remained below 30 mg L-1 in the more diverse cultures. The maximum concentration of propionate was observed in less diverse cultures (240 mg L-1 and 37 mg L-1 for S37 and Nrich cultures, respectively). The highly diverse cultures outperformed the medium and low diversity cultures in the long-term operation. Methanogenic communities were mainly composed of hydrogenotrophic methanogens in all cultures. Aceticlastic methanogenesis was only active in the highly diverse sludge community throughout the experiment. The more diverse the inocula, the more methane was produced and the less volatile fatty acids accumulated, which could be attributed to the high number of microbial functions working together to keep a stable and balanced process. It is concluded that the inoculum origin and its diversity are very important factors to consider when the biomethanation process is performed with complex microbial communities.

5.
Microorganisms ; 10(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35456811

RESUMEN

The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.

6.
Microorganisms ; 10(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35208809

RESUMEN

Mixed or pure cultures can be used for biomethanation of hydrogen. Sodium 2-bromoethanesulfonate (BES) is an inhibitor of methanogenesis used to investigate competing reactions like homoacetogenesis in mixed cultures. To understand the effect of BES on the hydrogenotrophic metabolism in a biomethanation process, anaerobic granules from a wastewater treatment plant, a hydrogenotrophic enrichment culture, and pure cultures of Methanococcus maripaludis and Methanobacterium formicicum were incubated under H2/CO2 headspace in the presence or absence of BES, and the turnover of H2, CO2, CH4, formate and acetate was analyzed. Anaerobic granules produced the highest amount of formate after 24 h of incubation in the presence of BES. Treating the enrichment culture with BES led to the accumulation of formate. M. maripaludis produced more formate than M. formicicum when treated with BES. The non-inhibited methanogenic communities produced small amounts of formate whereas the pure cultures did not. The highest amount of acetate was produced by the anaerobic granules concomitantly with formate consumption. These results indicate that formate is an important intermediate of hydrogenotrophic metabolism accumulating upon methanogenesis inhibition.

7.
PLoS One ; 16(9): e0257759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34555107

RESUMEN

Livestock manure emits reduced sulfur compounds and methane, which affect nature and the climate. These gases are efficiently mitigated by addition of a tannic acid-sodium fluoride combination inhibitor (TA-NaF), and to some extent by acidification. In this paper, TA-NaF treatment was performed on swine manure to study the treatment influence on methanogenic pathways and sulfur transformation pathways in various laboratory experiments. Stable carbon isotope labeling revealed that both untreated and TA-NaF treated swine manures were dominated by hydrogenotrophic methanogenesis. However, in supplementary experiments in wastewater sludge, TA-NaF clearly inhibited acetoclastic methanogenesis, whereas acidification inhibited hydrogenotrophic methanogenesis. In swine manure, TA-NaF inhibited s-amino acid catabolism to a larger extent than sulfate reduction. Conversely, acidification reduced sulfate reduction activity more than s-amino acid degradation. TA-NaF treatment had no significant effect on methanogenic community structure, which was surprising considering clear effects on isotope ratios of methane and carbon dioxide. Halophile sulfate reducers adapted well to TA-NaF treatment, but the community change also depended on temperature. The combined experimental work resulted in a proposed inhibition scheme for sulfur transformations and methanogenic pathways as affected by TA-NaF and acidification in swine manure and in other inocula.


Asunto(s)
Bacterias/clasificación , Fluoruros/química , Estiércol/microbiología , Metano/análisis , Azufre/análisis , Taninos/química , Contaminantes Atmosféricos/análisis , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Isótopos de Carbono/análisis , ADN Bacteriano/genética , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Estiércol/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos , Aguas Residuales/química
8.
Front Microbiol ; 12: 619632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643248

RESUMEN

Ex situ biomethanation allows the conversion of hydrogen produced from surplus electricity to methane. The flexibility of the process was recently demonstrated, yet it is unknown how intermittent hydrogen feeding impacts the functionality of the microbial communities. We investigated the effect of starvation events on the hydrogen consumption and methane production rates (MPRs) of two different methanogenic communities that were fed with hydrogen and carbon dioxide. Both communities showed functional resilience in terms of hydrogen consumption and MPRs upon starvation periods of up to 14 days. The origin of the inoculum, community structure and dominant methanogens were decisive for high gas conversion rates. Thus, pre-screening a well performing inoculum is essential to ensure the efficiency of biomethanation systems operating under flexible gas feeding regimes. Our results suggest that the type of the predominant hydrogenotrophic methanogen (here: Methanobacterium) is important for an efficient process. We also show that flexible biomethanation of hydrogen and carbon dioxide with complex microbiota is possible while avoiding the accumulation of acetate, which is relevant for practical implementation. In our study, the inoculum from an upflow anaerobic sludge blanket reactor treating wastewater from paper industry performed better compared to the inoculum from a plug flow reactor treating cow manure and corn silage. Therefore, the implementation of the power-to-gas concept in wastewater treatment plants of the paper industry, where biocatalytic biomass is readily available, may be a viable option to reduce the carbon footprint of the paper industry.

9.
Bioengineering (Basel) ; 7(4)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297305

RESUMEN

Despite being a mature biotechnological process, anaerobic digestion is still attracting considerable research attention, mainly due to its versatility both in substrate and product spectra, as well as being a perfect test system for the microbial ecology of anaerobes [...].

10.
Microorganisms ; 8(4)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344539

RESUMEN

Biomethanation is a promising solution to convert H2 (produced from surplus electricity) and CO2 to CH4 by using hydrogenotrophic methanogens. In ex situ biomethanation with mixed cultures, homoacetogens and methanogens compete for H2/CO2. We enriched a hydrogenotrophic microbiota on CO2 and H2 as sole carbon and energy sources, respectively, to investigate these competing reactions. The microbial community structure and dynamics of bacteria and methanogenic archaea were evaluated through 16S rRNA and mcrA gene amplicon sequencing, respectively. Hydrogenotrophic methanogens and homoacetogens were enriched, as acetate was concomitantly produced alongside CH4. By controlling the media composition, especially changing the reducing agent, the formation of acetate was lowered and grid quality CH4 (≥97%) was obtained. Formate was identified as an intermediate that was produced and consumed during the bioprocess. Stirring intensities ≥ 1000 rpm were detrimental, probably due to shear force stress. The predominating methanogens belonged to the genera Methanobacterium and Methanoculleus. The bacterial community was dominated by Lutispora. The methanogenic community was stable, whereas the bacterial community was more dynamic. Our results suggest that hydrogenotrophic communities can be steered towards the selective production of CH4 from H2/CO2 by adapting the media composition, the reducing agent and the stirring intensity.

11.
Bioresour Technol ; 307: 123171, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32203867

RESUMEN

Livestock waste is stored and used as soil fertilizer or directly as substrate for biogas production. Methane emissions from manure storages and ammonia inhibition of anaerobic digesters fed with manure, are well-known problems related to manure management. This study examines the effect of adding tannic acid with fluoride (TA-NaF) and lignosulfonic acid (LS) on methanogenic activity in batch reactors with ammonia inhibited maize silage digestate and in batch reactors with manure. Lignosulfonic acid counteracted urea induced ammonia inhibition of methanogenesis, whereas TA-NaF inhibited methanogenesis itself. Stable carbon isotope ratio analysis and methanogen community analysis suggested that TA-NaF affected acetoclastic methanogens the most. The combined findings suggest that TA-NaF could be used to reduce methane emissions from stored manure. Conversely, LS could be used as supplement in anaerobic digesters prone to urea induced ammonia inhibition.


Asunto(s)
Fluoruros , Administración de Residuos , Anaerobiosis , Biocombustibles , Reactores Biológicos , Estiércol , Metano , Taninos
12.
J Hazard Mater ; 384: 121448, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31668499

RESUMEN

Lindane, the γ-hexachlorocyclohexane (HCH) isomer, was among the most used pesticides worldwide. Although it was banned in 2009, residues of Lindane and other HCH-isomers are still found with high concentrations in contaminated fields. For clean-up, phytoremediation combined with anaerobic digestion (AD) of contaminated biomass to produce biogas and fertilizer could be a promising strategy and was tested in two 15 L laboratory-scale continuous stirred tank reactors. During operation over one year by adding HCH isomers (γ, α and ß) consecutively, no negative influence on conventional reactor parameters was observed. The γ- and α-HCH isomers were transformed to chlorobenzene and benzene, and transformation became faster along with time, while ß-HCH was not removed. Genus Methanosaeta and order Clostridiales, showing significant enhancement on abundance with HCH addition, may be used as bioindicators for HCH dehalogenation in AD process. The potential for HCH degradation in AD system was restricted to axial Cl atoms of HCH and it showed slight enantioselective preference towards transformation of (+) α-HCH. Moreover, metabolite benzene was mineralized to CO2 and methane, deducing from tracer experiments with benzene-13C6. Overall, AD appears to be a feasible option for treatment of γ and α-HCHs contaminated biomass.


Asunto(s)
Benceno/metabolismo , Reactores Biológicos , Clorobencenos/metabolismo , Hexaclorociclohexano/metabolismo , Insecticidas/metabolismo , Zea mays/metabolismo , Anaerobiosis , Biodegradación Ambiental , Biocombustibles , Biomasa , Biotransformación , Dióxido de Carbono/metabolismo , Clostridiales/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Microbiota
13.
Appl Microbiol Biotechnol ; 104(2): 489-508, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31797006

RESUMEN

The aim of this review is to give a summary of natural lignocellulose-degrading systems focusing mainly on animal digestive tracts of wood-feeding insects and ruminants in order to find effective strategies that can be applied to improve anaerobic digestion processes in engineered systems. Wood-feeding animals co-evolved with symbiotic microorganisms to digest lignocellulose-rich biomass in a very successful way. Considering the similarities between these animal gut systems and the lignocellulose-based biotechnological processes, the gut with its microbial consortium can be a perfect model for an advanced lignocellulose-degrading biorefinery. The physicochemical properties and structure of the gut may provide a scheme for the process design, and the microbial consortium may be applied as genetic resource for the up-scaled bioreactor communities. Manipulation of the gut microbiota is also discussed in relation to the management of the reactor communities.


Asunto(s)
Biotecnología/métodos , Microbioma Gastrointestinal , Insectos/microbiología , Lignina/metabolismo , Rumiantes/microbiología , Anaerobiosis , Animales , Reactores Biológicos/microbiología , Biotransformación , Lignina/química
14.
Water Res ; 163: 114882, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31352241

RESUMEN

The ability of anaerobic digestion (AD) to eliminate organophosphorus model compounds (OPs) with structural elements of phosphate, phosphorothioate and phosphorodithioate esters was studied. The enzymatic mechanism of the first irreversible degradation reaction was characterized using metabolite pattern and kinetic 2H/13C-isotope effect in original, cell-free and heat sterilized biogas slurry. The isotope fractionation study suggests different modes of degradation reactions. Representatives for phosphate ester, tris(2-chloroethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate, were hydrolyzed in biogas slurry without carbon or hydrogen isotope fractionation. Representatives for phosphorodithioate, Dimethoate and Malathion, were degraded in original slurry yielding carbon enrichment factor (εC) of -0.6 ±â€¯0.1‰ and -5.5 ±â€¯0.1‰ (-0.9 ±â€¯0.1‰ and -7.2 ±â€¯0.5‰ in cell-free slurry), without hydrogen isotope fractionation. Phosphorothioate degradation represented by Parathion and Parathion-methyl yielded surprisingly different εC (-0.7 ±â€¯0.2 and -3.6 ±â€¯0.4‰) and εH (-33 ±â€¯5 and -5 ±â€¯1‰) in original slurry compared to cell-free slurry (εC = -2.5 ±â€¯0.5 and -8.6 ±â€¯1.4‰; εH = -61 ±â€¯10 and -10 ±â€¯3‰) suggesting H-C bond cleavage. Degradation of Parathion and Parathion-methyl in sterilized slurry gave carbon but not hydrogen fractionation implying relative thermostable enzymatic activity with different mechanism. The correlation of 2H and 13C stable isotope fractionation of Parathion in biogas slurry showed distinct pattern (Λoriginal = 31 ±â€¯11, Λcell-free = 20 ±â€¯2), indicating different mechanism from chemical hydrolysis. Overall, AD can be a potential treatment for OPs contaminated biomass or contaminated organic waste material.


Asunto(s)
Biocombustibles , Compuestos Organofosforados , Anaerobiosis , Biodegradación Ambiental , Biomasa , Isótopos de Carbono , Fraccionamiento Químico
15.
Appl Microbiol Biotechnol ; 103(1): 519-533, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30334088

RESUMEN

Anaerobic digestion of nitrogen-rich substrate often causes process inhibition due to the susceptibility of the microbial community facing ammonia accumulation. However, the precise response of the microbial community has remained largely unknown. To explore the reasons, bacterial communities in ammonia-stressed reactors and control reactors were studied by amplicon pyrosequencing of 16S rRNA genes and the active methanogens were followed by terminal restriction fragment length polymorphism (T-RFLP) analyses of mcrA/mrtA gene transcripts. The results showed that the diversity of bacterial communities decreased in two parallel ammonia-inhibited reactors compared with two control reactors, but different levels of inhibitions coinciding with different community shifts were observed. In one reactor, the process was completely inhibited, which was preceded by a decreasing relative abundance of the phylum Firmicutes. Despite the same operating conditions, the process was stabilized in the parallel, partially inhibited reactor, in which the relative abundance of Firmicutes greatly increased. In particular, both ammonia-inhibited reactors lacked taxa assumed to be syntrophic bacteria (Thermoanaerobacteraceae, Syntrophomonadaceae, and Synergistaceae). Besides the predominance of the hydrogenotrophic methanogens Methanoculleus and Methanobacterium, activity of Methanosarcina and even of the strictly aceticlastic genus Methanosaeta were found to contribute at very high ammonia levels (> 9 g NH4-N L-1) in the stabilized reactor (partial inhibition). In contrast, the lack of aceticlastic activity in the parallel reactor might have led to acetate accumulation and thus process failure (complete inhibition). Collectively, ammonia was found to be a general inhibitor while accumulating acetate and thus acidification might be the key factor of complete process failure.


Asunto(s)
Amoníaco/metabolismo , Biocombustibles , Reactores Biológicos/microbiología , Consorcios Microbianos/fisiología , Amoníaco/farmacología , Biodiversidad , Metano/metabolismo , Consorcios Microbianos/efectos de los fármacos , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Eng Life Sci ; 18(7): 440-446, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32624925

RESUMEN

Three different bioaugmentation cultures enriched from natural and engineered cellulolytic environments (cow and goat rumen, a biogas reactor digesting sorghum biomass) were compared for their enhancement potential on the anaerobic digestion of wheat straw. Methane yields were determined in batch tests using the Automatic Methane Potential Test System operated for 30 days under mesophilic conditions. All cultures had positive effects on substrate degradation, and higher methane yields were observed in the bioaugmented reactors compared to control reactors set up with standard inoculum. However, the level of enhancement differed according to the type of the enrichment culture. Methane yield in batch reactors augmented with 2% cow rumen derived enrichment culture was increased by only 6%. In contrast, reactors amended with 2% goat rumen derived enrichment culture or with the bioaugmentation culture obtained from the biogas reactor digesting sorghum biomass produced 27 and 20% more methane, respectively. The highest methane yield was recorded in reactors amended with 6% goat rumen derived enrichment culture, which represented an increase by 36%. The microbial communities were quite similar at the end of the batch tests independently of the bioaugmentation sources, indicating that the introduced microbial communities of the enrichment cultures did not dominate the reactors.

17.
Bioresour Technol ; 250: 683-690, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29220813

RESUMEN

Hexachlorocyclohexane (HCH) production for pesticides was banned by Stockholm Convention (2009) due to its harmful and adverse effects on the environment. Despite this measure, many areas contaminated with former HCH production-waste products still require management. As a potential solution contributing to clean-up of these sites, anaerobic digestion (AD) of pesticide-contaminated biomass to produce biogas is a promising strategy. High pesticide concentrations, however, may inhibit biogas production. Therefore, laboratory-scale batch reactors were set up to investigate biogas reactor performance in presence of HCH. Inhibitory effects on biogas yield was observed with concentrations of HCH ≥ 150 mg/L. Carbon isotope composition of methane (δ13CCH4) showed significant fluctuation after an inhibition phase, indicating that HCH toxicity can affect the activity of acetoclastic methanogens. Furthermore, combined results of metabolites and carbon isotope fractionation factors (εc) demonstrated that α- and γ-HCH can be degraded to chlorobenzene and benzene via anaerobic reductive dechlorination.


Asunto(s)
Biocombustibles , Hexaclorociclohexano , Biomasa , Biotransformación , Fraccionamiento Químico , Metano
18.
Appl Microbiol Biotechnol ; 102(2): 1035-1043, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29151162

RESUMEN

The aim of this study was to develop an effective bioaugmentation concept for anaerobic digesters treating lignocellulosic biomass such as straw. For that purpose, lignocellulose-degrading methanogenic communities were enriched on wheat straw from cow and goat rumen fluid as well as from a biogas reactor acclimated to lignocellulosic biomass (sorghum as mono-substrate). The bacterial communities of the enriched cultures and the different inocula were examined by 454 amplicon sequencing of 16S rRNA genes while the methanogenic archaeal communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of the mcrA gene. Bacteroidetes was the most abundant phylum in all samples. Within the Bacteroidetes phylum, Bacteroidaceae was the most abundant family in the rumen-derived enrichment cultures, whereas Porphyromonadaceae was the predominant one in the reactor-derived culture. Additionally, the enrichment procedure increased the relative abundance of Ruminococcaceae (phylum: Firmicutes) in all cultures. T-RFLP profiles of the mcrA gene amplicons highlighted that the ruminal methanogenic communities were composed of hydrogenotrophic methanogens dominated by the order Methanobacteriales regardless of the host species. The methanogenic communities changed significantly during the enrichment procedure, but still the strict hydrogenotrophic Methanobacteriales and Methanomicrobiales were the predominant orders in the enrichment cultures. The bioaugmentation potential of the enriched methanogenic cultures will be evaluated in further studies.


Asunto(s)
Bacterias/clasificación , Lignina/metabolismo , Metano/metabolismo , Consorcios Microbianos , Anaerobiosis , Animales , Bacterias/aislamiento & purificación , Biodiversidad , Biocombustibles , Bovinos , Enzimas de Restricción del ADN/genética , Cabras , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rumen/microbiología
19.
Bioresour Technol ; 245(Pt A): 35-43, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28892704

RESUMEN

Anaerobic digestion of sugarcane straw co-digested with sugarcane filter cake was investigated with a special focus on macronutrients supplementation for an optimized conversion process. Experimental data from batch tests and a semi-continuous experiment operated in different supplementation phases were used for modeling the conversion kinetics based on continuous stirred-tank reactors. The semi-continuous experiment showed an overall decrease in the performance along the inoculum washout from the reactors. By supplementing nitrogen alone or in combination to phosphorus and sulfur the specific methane production significantly increased (P<0.05) by 17% and 44%, respectively. Although the two-pool one-step model has fitted well to the batch experimental data (R2>0.99), the use of the depicted kinetics did not provide a good estimation for process simulation of the semi-continuous process (in any supplementation phase), possibly due to the different feeding modes and inoculum source, activity and adaptation.


Asunto(s)
Anaerobiosis , Saccharum , Reactores Biológicos , Cinética , Metano
20.
Anaerobe ; 46: 122-130, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28323135

RESUMEN

The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mLN CH4 gVS-1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Biotransformación , Celulosa/metabolismo , Rumen/microbiología , Triticum/metabolismo , Triticum/microbiología , Anaerobiosis , Animales , Hidrólisis , Metagenoma , Metagenómica/métodos , Metano/biosíntesis , Microbiota , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...