Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 7(11): e2300476, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37661594

RESUMEN

Organic semiconductors are a family of pi-conjugated compounds used in many applications, such as displays, bioelectronics, and thermoelectrics. However, their susceptibility to processing-induced contamination is not well understood. Here, it is shown that many organic electronic devices reported so far may have been unintentionally contaminated, thus affecting their performance, water uptake, and thin film properties. Nuclear magnetic resonance spectroscopy is used to detect and quantify contaminants originating from the glovebox atmosphere and common laboratory consumables used during device fabrication. Importantly, this in-depth understanding of the sources of contamination allows the establishment of clean fabrication protocols, and the fabrication of organic field effect transistors (OFETs) with improved performance and stability. This study highlights the role of unintentional contaminants in organic electronic devices, and demonstrates that certain stringent processing conditions need to be met to avoid scientific misinterpretation, ensure device reproducibility, and facilitate performance stability. The experimental procedures and conditions used herein are typical of those used by many groups in the field of solution-processed organic semiconductors. Therefore, the insights gained into the effects of contamination are likely to be broadly applicable to studies, not just of OFETs, but also of other devices based on these materials.

2.
Sci Adv ; 9(22): eadg8659, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267357

RESUMEN

Organic thin-film transistors (OTFTs) with ideal behavior are highly desired, because nonideal devices may overestimate the intrinsic property and yield inferior performance in applications. In reality, most polymer OTFTs reported in the literature do not exhibit ideal characteristics. Supported by a structure-property relationship study of several low-disorder conjugated polymers, here, we present an empirical selection rule for polymer candidates for textbook-like OTFTs with high reliability factors (100% for ideal transistors). The successful candidates should have low energetic disorder along their backbones and form thin films with spatially uniform energetic landscapes. We demonstrate that these requirements are satisfied in the semicrystalline polymer PffBT4T-2DT, which exhibits a reliability factor (~100%) that is exceptionally high for polymer devices, rendering it an ideal candidate for OTFT applications. Our findings broaden the selection of polymer semiconductors with textbook-like OTFT characteristics and would shed light upon the molecular design criteria for next-generation polymer semiconductors.

3.
Sci Adv ; 7(18)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33910909

RESUMEN

We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities up to 0.5 cm2 V-1 s-1 Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. Our work provides important insights into the factors that limit charge transport in this unique class of polymers and allows us to identify molecular design strategies for achieving even higher levels of performance.

4.
ACS Appl Mater Interfaces ; 12(36): 40581-40589, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32805944

RESUMEN

High levels of performance and stability have been demonstrated for conjugated polymer thin-film transistors in recent years, making them promising materials for flexible electronic circuits and displays. For sensing applications, however, most research efforts have been focusing on electrochemical sensing devices. Here we demonstrate a highly stable biosensing platform using polymer transistors based on the dual-gate mechanism. In this architecture a sensing signal is transduced and amplified by the capacitive coupling between a low-k bottom dielectric and a high-k ionic elastomer top dielectric that is in contact with an analyte solution. The new design exhibits a high signal amplification, high stability under bias stress in various aqueous environments, and low signal drift. Our platform, furthermore, while responding expectedly to charged analytes such as the protein bovine serum albumin, is insensitive to changes of salt concentration of the analyte solution. These features make this platform a potentially suitable tool for a variety of biosensing applications.


Asunto(s)
Técnicas Biosensibles , Albúmina Sérica Bovina/análisis , Animales , Bovinos , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie , Transistores Electrónicos
5.
Adv Mater ; 32(23): e2000063, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32363687

RESUMEN

Precise control of the microstructure in organic semiconductors (OSCs) is essential for developing high-performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid-rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high-resolution scanning tunneling microscopy (STM). The rigid structure of the polymers allows the formation of thin films with uniaxially aligned polymer chains by using a simple one-step solution-shear/bar coating technique. These aligned films show a high optical anisotropy with a dichroic ratio of up to a factor of 6. Transport measurements performed using top-gate bottom-contact field-effect transistors exhibit a high saturation electron mobility of 0.2 cm2 V-1 s-1 along the alignment direction, which is more than six times higher than the value reported in the previous work. This work demonstrates that this new class of polymers is able to achieve mobility values comparable to state-of-the-art n-type polymers and identifies an effective processing strategy for this class of rigid-rod polymer system to optimize their charge transport properties.

6.
Nat Mater ; 19(5): 491-502, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32296138

RESUMEN

Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure-property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films-as used, for example, in bioelectronics and thermoelectric devices-affects the electronic structure and charge transport properties.

7.
J Am Chem Soc ; 142(2): 652-664, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31851506

RESUMEN

The polymer indacenodithiophene-co-benzothiadiazole (IDT-BT) has been thoroughly studied for its use in p-type organic thin-film transistors over the course of the past decade. While a variety of modifications have been made to its structure, few analogues have been able to match or surpass the hole mobility that can be obtained by IDT-BT. Here, we discuss the rationale behind the chemical modifications that have been utilized and suggest design principles toward high-mobility indacenodithiophene-based polymers. It is clear that planarizing intramolecular interactions, which exist between the peripheral thiophene of the IDT unit and the benzothiadiazole, are imperative for achieving high hole mobilities in this relatively amorphous polymer. Moreover, despite the less ordered backbones of the extended fused-ring cores that have recently been utilized (TIF-BT and TBIDT-BT), high mobilities were still attained in these polymers owing to additional interchain charge transfer. Thus, maintaining the beneficial thiophene-benzothiadiazole intramolecular interactions, while further extending the IDT core to promote interchain charge transfer, is a logical strategy toward high-mobility p-type polymers.

8.
J Am Chem Soc ; 141(47): 18806-18813, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31613619

RESUMEN

A fused donor, thienobenzo[b]indacenodithiophene (TBIDT), was designed and synthesized using a novel acid-promoted cascade ring closure strategy, and then copolymerized with a benzothiadiazole (BT) monomer. The backbone of TBIDT is an expansion of the well-known indacenodithiophene (IDT) unit and was expected to enhance the charge carrier mobility by improving backbone planarity and facilitating short contacts between polymer chains. However, the optimized field-effect transistors demonstrated an average saturation hole mobility of 0.9 cm2 V-1 s-1, lower than the performance of IDT-BT (∼1.5 cm2 V-1 s-1). Mobilities extracted from time-resolved microwave conductivity measurements were consistent with the trend in hole mobilities in organic field-effect transistor devices. Scanning tunneling microscopy measurements and computational modeling illustrated that TBIDT-BT exhibits a less ordered microstructure in comparison to IDT-BT. This reveals that a regular side-chain packing density, independent of conformational isomers, is critical to avoid local free volume due to irregular packing, which can host trapping impurities. DFT calculations indicated that TBIDT-BT, despite containing a larger, planar unit, showed less stabilization of planar backbone geometries in comparison to IDT-BT. This is due to the reduced electrostatic stabilizing interactions between the peripheral thiophene of the fused core and the BT unit, resulting in a reduction of the barrier to rotation around the single bond. These insights provide a greater understanding of the general structure-property relationships required for semiconducting polymer repeat units to ensure optimal backbone planarization, as illustrated with IDT-type units, guiding the design of novel semiconducting polymers with extended fused backbones for high-performance field-effect transistors.

9.
Nat Commun ; 10(1): 2614, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197152

RESUMEN

Efficient conjugated polymer optoelectronic devices benefit from concomitantly high luminescence and high charge carrier mobility. This is difficult to achieve, as interchain interactions, which are needed to ensure efficient charge transport, tend also to reduce radiative recombination and lead to solid-state quenching effects. Many studies detail strategies for reducing these interactions to increase luminescence, or modifying chain packing motifs to improve percolation charge transport; however achieving these properties together has proved elusive. Here, we show that properly designed amorphous donor-alt-acceptor conjugated polymers can circumvent this problem; combining a tuneable energy gap, fast radiative recombination rates and luminescence quantum efficiencies >15% with high carrier mobilities exceeding 2.4 cm2/Vs. We use photoluminescence from exciton states pinned to close-crossing points to study the interplay between mobility and luminescence. These materials show promise towards realising advanced optoelectronic devices based on conjugated polymers, including electrically-driven polymer lasers.

10.
Nat Commun ; 10(1): 2122, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073179

RESUMEN

Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm2/Vs and a width of the residual tail state distribution comparable to kBT.

11.
Nat Mater ; 18(6): 594-601, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30988452

RESUMEN

Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π-π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films.

12.
Adv Mater ; : e1801874, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022541

RESUMEN

The exploration of a wide range of molecular structures has led to the development of high-performance conjugated polymer semiconductors for flexible electronic applications including displays, sensors, and logic circuits. Nevertheless, many conjugated polymer field-effect transistors (OFETs) exhibit nonideal device characteristics and device instabilities rendering them unfit for industrial applications. These often do not originate in the material's intrinsic molecular structure, but rather in external trap states caused by chemical impurities or environmental species such as water. Here, a highly efficient mechanism is demonstrated for the removal of water-induced traps that are omnipresent in conjugated polymer devices even when processed in inert environments; the underlying mechanism is shown, by which small-molecular additives with water-binding nitrile groups or alternatively water-solvent azeotropes are capable of removing water-induced traps leading to a significant improvement in OFET performance. It is also shown how certain polymer structures containing strong hydrogen accepting groups will suffer from poor performances due to their high susceptibility to interact with water molecules; this allows the design guidelines for a next generation of stable, high-performing conjugated polymers to be set forth.

13.
Nat Commun ; 9(1): 416, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379022

RESUMEN

Conventional semiconducting polymer synthesis typically involves transition metal-mediated coupling reactions that link aromatic units with single bonds along the backbone. Rotation around these bonds contributes to conformational and energetic disorder and therefore potentially limits charge delocalisation, whereas the use of transition metals presents difficulties for sustainability and application in biological environments. Here we show that a simple aldol condensation reaction can prepare polymers where double bonds lock-in a rigid backbone conformation, thus eliminating free rotation along the conjugated backbone. This polymerisation route requires neither organometallic monomers nor transition metal catalysts and offers a reliable design strategy to facilitate delocalisation of frontier molecular orbitals, elimination of energetic disorder arising from rotational torsion and allowing closer interchain electronic coupling. These characteristics are desirable for high charge carrier mobilities. Our polymers with a high electron affinity display long wavelength NIR absorption with air stable electron transport in solution processed organic thin film transistors.

14.
Adv Mater ; 29(36)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28731227

RESUMEN

The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm2 V-1 s-1 in bottom-gate top-contact organic field-effect transistors.

15.
Adv Mater ; 29(23)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28397305

RESUMEN

Solution-processed semiconductors such as conjugated polymers have great potential in large-area electronics. While extremely appealing due to their low-temperature and high-throughput deposition methods, their integration in high-performance circuits has been difficult. An important remaining challenge is the achievement of low-voltage circuit operation. The present study focuses on state-of-the-art polymer thin-film transistors based on poly(indacenodithiophene-benzothiadiazole) and shows that the general paradigm for low-voltage operation via an enhanced gate-to-channel capacitive coupling is unable to deliver high-performance device behavior. The order-of-magnitude longitudinal-field reduction demanded by low-voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap-reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low-voltage high-mobility operation. This approach is readily applicable to low-voltage circuit integration, as this work exemplifies by demonstrating high-performance analog differential amplifiers operating at a battery-compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low-voltage polymer transistors for solution-based analog electronics that meets performance and power-dissipation requirements for a range of battery-powered smart-sensing applications.

16.
Nat Mater ; 16(3): 356-362, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27941806

RESUMEN

Due to their low-temperature processing properties and inherent mechanical flexibility, conjugated polymer field-effect transistors (FETs) are promising candidates for enabling flexible electronic circuits and displays. Much progress has been made on materials performance; however, there remain significant concerns about operational and environmental stability, particularly in the context of applications that require a very high level of threshold voltage stability, such as active-matrix addressing of organic light-emitting diode displays. Here, we investigate the physical mechanisms behind operational and environmental degradation of high-mobility, p-type polymer FETs and demonstrate an effective route to improve device stability. We show that water incorporated in nanometre-sized voids within the polymer microstructure is the key factor in charge trapping and device degradation. By inserting molecular additives that displace water from these voids, it is possible to increase the stability as well as uniformity to a high level sufficient for demanding industrial applications.

17.
ACS Nano ; 10(12): 10736-10744, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27809478

RESUMEN

Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

18.
Nat Mater ; 15(8): 896-902, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27159015

RESUMEN

Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

19.
Adv Mater ; 28(30): 6378-85, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27166597

RESUMEN

Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str(-1) m(-2) at 800 nm.

20.
Nat Commun ; 7: 10736, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26898754

RESUMEN

Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...