Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Microbiol ; 8(5): 819-832, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037941

RESUMEN

Whether or not autophagy has a role in defence against Mycobacterium tuberculosis infection remains unresolved. Previously, conditional knockdown of the core autophagy component ATG5 in myeloid cells was reported to confer extreme susceptibility to M. tuberculosis in mice, whereas depletion of other autophagy factors had no effect on infection. We show that doubling cre gene dosage to more robustly deplete ATG16L1 or ATG7 resulted in increased M. tuberculosis growth and host susceptibility in mice, although ATG5-depleted mice are more sensitive than ATG16L1- or ATG7-depleted mice. We imaged individual macrophages infected with M. tuberculosis and identified a shift from apoptosis to rapid necrosis in autophagy-depleted cells. This effect was dependent on phagosome permeabilization by M. tuberculosis. We monitored infected cells by electron microscopy, showing that autophagy protects the host macrophage by partially reducing mycobacterial access to the cytosol. We conclude that autophagy has an important role in defence against M. tuberculosis in mammals.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Tuberculosis/microbiología , Autofagia/genética , Macrófagos/microbiología , Proteína 5 Relacionada con la Autofagia/genética , Mamíferos
3.
Org Biomol Chem ; 19(1): 171-181, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33150349

RESUMEN

DNAzymes were previously identified by in vitro selection for a variety of chemical reactions, including several biologically relevant peptide modifications. However, finding DNAzymes for peptide lysine acylation is a substantial challenge. By using suitably reactive aryl ester acyl donors as the electrophiles, here we used in vitro selection to identify DNAzymes that acylate amines, including lysine side chains of DNA-anchored peptides. Some of the DNAzymes can transfer a small glutaryl group to an amino group. These results expand the scope of DNAzyme catalysis and suggest the future broader applicability of DNAzymes for sequence-selective lysine acylation of peptide and protein substrates.


Asunto(s)
Aminas/química , Biocatálisis , ADN Catalítico/metabolismo , Lisina/química , Péptidos/química , Acilación
4.
Dev Biol ; 444(1): 33-40, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30268714

RESUMEN

During sexual reproduction or conjugation, ciliates form a specialized cell adhesion zone for the purpose of exchanging gametic pronuclei. Hundreds of individual membrane fusion events transform the adhesion zone into a perforated membrane curtain, the mating junction. Pronuclei from each mating partner are propelled through this fenestrated membrane junction by a web of short, cris-crossing microtubules. Pronuclear passage results in the formation of two breaches in the membrane junction. Following pronuclear exchange and karyogamy (fertilization), cells seal these twin membrane breaches thereby re-establishing cellular independence. This would seem like a straightforward problem: simply grow membrane in from the edges of each breach in a fashion similar to how animal cells "grow" their cytokinetic furrows or how plant cells construct a cell wall during mitosis. Serial section electron microscopy and 3-D electron tomography reveal that the actual mechanism is less straightforward. Each of the two membrane breaches transforms into a bowed membrane assembly platform. The resulting membrane protrusions continue to grow into the cytoplasm of the mating partner, traverse the cytoplasm in anti-parallel directions and make contact with the plasma membrane that flanks the mating junction. This investigation reveals the details of a novel, developmentally-induced mechanism of membrane disruption and restoration associated with pronuclear exchange and fertilization in the ciliate, Tetrahymena thermophila.


Asunto(s)
Conjugación Genética/fisiología , Fusión de Membrana/fisiología , Tetrahymena thermophila/fisiología , Animales , Adhesión Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cilióforos , Conjugación Genética/genética , Citoplasma , Microscopía Electrónica , Microtúbulos , Mitosis , Reproducción/fisiología , Tetrahymena/genética , Tetrahymena thermophila/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...