Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Res Sq ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826463

RESUMEN

Traditional feature dimension reduction methods have been widely used to uncover biological patterns or structures within individual spatial transcriptomics data. However, these methods are designed to yield feature representations that emphasize patterns or structures with dominant high variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may inadvertently overlook patterns of interest that are potentially masked by these high-variance structures. Herein we present our graph contrastive feature representation method called CoCo-ST (Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By incorporating a background data set representing normal tissue, this approach enhances the identification of interesting patterns in a target data set representing precancerous tissue. Simultaneously, it mitigates the influence of dominant common patterns shared by the background and target data sets. This enables discerning biologically relevant features crucial for capturing tissue-specific patterns, a capability we showcased through the analysis of serial mouse precancerous lung tissue samples.

2.
Cancer Cell ; 42(2): 225-237.e5, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38278149

RESUMEN

Small cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC patients and using machine learning approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA (cfDNA) to subtype SCLC from plasma. Using the cfDNA classifier (cfDMC), we demonstrate that SCLC phenotypes can evolve during disease progression, highlighting the need for longitudinal tracking of SCLC during clinical treatment. These data establish that tumor and cfDNA methylation can be used to identify SCLC subtypes and might guide precision SCLC therapy.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metilación de ADN , Ácidos Nucleicos Libres de Células/genética , Epigénesis Genética , Biomarcadores de Tumor/genética
3.
J Thorac Oncol ; 19(1): 106-118, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678511

RESUMEN

INTRODUCTION: NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS: We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS: We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS: Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neurregulina-1/genética , Neurregulina-1/metabolismo , Receptor ErbB-2 , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transducción de Señal
4.
Cancer Cell ; 41(2): 340-355.e6, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36787696

RESUMEN

Effective therapeutic strategies are needed for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations that acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) mediated by epithelial-to-mesenchymal transition (EMT). We investigate cell surface proteins that could be targeted by antibody-based or adoptive cell therapy approaches and identify CD70 as being highly upregulated in EMT-associated resistance. Moreover, CD70 upregulation is an early event in the evolution of resistance and occurs in drug-tolerant persister cells (DTPCs). CD70 promotes cell survival and invasiveness, and stimulation of CD70 triggers signal transduction pathways known to be re-activated with acquired TKI resistance. Anti-CD70 antibody drug conjugates (ADCs) and CD70-targeting chimeric antigen receptor (CAR) T cell and CAR NK cells show potent activity against EGFR TKI-resistant cells and DTPCs. These results identify CD70 as a therapeutic target for EGFR mutant tumors with acquired EGFR TKI resistance that merits clinical investigation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ligando CD27/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , /uso terapéutico
5.
Clin Cancer Res ; 29(7): 1292-1304, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595561

RESUMEN

PURPOSE: Patients with advanced non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are initially responsive to tyrosine kinase inhibitors (TKI). However, therapeutic resistance eventually emerges, often via secondary EGFR mutations or EGFR-independent mechanisms such as epithelial-to-mesenchymal transition. Treatment options after EGFR-TKI resistance are limited as anti-PD-1/PD-L1 inhibitors typically display minimal benefit. Given that IL6 is associated with worse outcomes in patients with NSCLC, we investigate whether IL6 in part contributes to this immunosuppressed phenotype. EXPERIMENTAL DESIGN: We utilized a syngeneic genetically engineered mouse model (GEMM) of EGFR-mutant NSCLC to investigate the effects of IL6 on the tumor microenvironment and the combined efficacy of IL6 inhibition and anti-PD-1 therapy. Corresponding in vitro studies used EGFR-mutant human cell lines and clinical specimens. RESULTS: We identified that EGFR-mutant tumors which have oncogene-independent acquired resistance to EGFR-TKIs were more mesenchymal and had markedly enhanced IL6 secretion. In EGFR-mutant GEMMs, IL6 depletion enhanced activation of infiltrating natural killer (NK)- and T-cell subpopulations and decreased immunosuppressive regulatory T and Th17 cell populations. Inhibition of IL6 increased NK- and T cell-mediated killing of human osimertinib-resistant EGFR-mutant NSCLC tumor cells in cell culture. IL6 blockade sensitized EGFR-mutant GEMM tumors to PD-1 inhibitors through an increase in tumor-infiltrating IFNγ+ CD8+ T cells. CONCLUSIONS: These data indicate that IL6 is upregulated in EGFR-mutant NSCLC tumors with acquired EGFR-TKI resistance and suppressed T- and NK-cell function. IL6 blockade enhanced antitumor immunity and efficacy of anti-PD-1 therapy warranting future clinical combinatorial investigations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Interleucina-6 , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB , Interleucina-6/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal , Microambiente Tumoral
6.
Clin Cancer Res ; 29(1): 30-39, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35969170

RESUMEN

Angiogenesis, the sprouting of new blood vessels from existing vessels, is one of six known mechanisms employed by solid tumors to recruit blood vessels necessary for their initiation, growth, and metastatic spread. The vascular network within the tumor facilitates the transport of nutrients, oxygen, and immune cells and is regulated by pro- and anti-angiogenic factors. Nearly four decades ago, VEGF was identified as a critical factor promoting vascular permeability and angiogenesis, followed by identification of VEGF family ligands and their receptors (VEGFR). Since then, over a dozen drugs targeting the VEGF/VEGFR pathway have been approved for approximately 20 solid tumor types, usually in combination with other therapies. Initially designed to starve tumors, these agents transiently "normalize" tumor vessels in preclinical and clinical studies, and in the clinic, increased tumor blood perfusion or oxygenation in response to these agents is associated with improved outcomes. Nevertheless, the survival benefit has been modest in most tumor types, and there are currently no biomarkers in routine clinical use for identifying which patients are most likely to benefit from treatment. However, the ability of these agents to reprogram the immunosuppressive tumor microenvironment into an immunostimulatory milieu has rekindled interest and has led to the FDA approval of seven different combinations of VEGF/VEGFR pathway inhibitors with immune checkpoint blockers for many solid tumors in the past 3 years. In this review, we discuss our understanding of the mechanisms of response and resistance to blocking VEGF/VEGFR, and potential strategies to develop more effective therapeutic approaches.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/tratamiento farmacológico , Transducción de Señal , Microambiente Tumoral
7.
Cancers (Basel) ; 14(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35884533

RESUMEN

BACKGROUND: The benefit of chemotherapy combined with immunotherapy in EGFR-mutant lung adenocarcinoma (LUAD) patients whose tumor developed resistance to EGFR tyrosine kinase inhibitors (TKIs) is not thoroughly investigated. The goal of this retrospective cohort study is to assess the clinical efficiency of immunotherapy alone or in combination with chemotherapy in a real-world setting. METHODS: This retrospective cohort study enrolled LUAD patients with EGFR sensitive mutations whose tumor had acquired resistance to EGFR TKIs and received systemic treatment with chemotherapy (chemo; n = 84), chemotherapy combined with immunotherapy (chemoIO; n = 30), chemotherapy plus bevacizumab with or without IO (withBev; n = 42), and IO monotherapy (IO-mono; n = 22). Clinical progression-free survival (PFS) and overall survival (OS) were evaluated. Associations of clinical characteristics with outcomes were assessed using univariable and multi-covariate Cox Proportional Hazards regression models. RESULTS: A total of 178 patients (median age = 63.3; 57.9% females) with a median follow-up time of 42.0 (Interquartile range: 22.9-67.8) months were enrolled. There was no significant difference in PFS between chemoIO vs. chemo groups (5.3 vs. 4.8 months, p = 0.8). Compared to the chemo group, patients who received withBev therapy trended towards better PFS (6.1 months vs. 4.8; p = 0.3; HR 0.79; 95% CI: 0.52-1.20), while patients treated with IO-mono had inferior PFS (2.2 months; p = 0.001; HR 2.22; 95% CI: 1.37-3.59). Furthermore, PD-L1 level was not associated with PFS benefit in the chemoIO group. Patients with EGFR-mutant LUAD with high PD-L1 (≥50%) had shorter PFS (5.8 months) than non-EGFR/ALK LUAD patients who received chemoIO (12.8 months, p = 0.002; HR 0.22; 95% CI: 0.08-0.56) as first-line treatment. Chemotherapy-based therapy rendered similar benefit to patients with either EGFR exon19 deletion vs. L858R in the LUAD. CONCLUSIONS: This retrospective analysis revealed that immunotherapy provided limited additional benefit to chemotherapy in TKI-refractory EGFR-mutant LUAD. Chemotherapy alone or combined with bevacizumab remain good choices for patients with actionable EGFR mutations.

8.
Cancer Cell ; 40(7): 754-767.e6, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820397

RESUMEN

We report a phase II study of 50 advanced non-small cell lung cancer (NSCLC) patients with point mutations or insertions in EGFR exon 20 treated with poziotinib (NCT03066206). The study achieved its primary endpoint, with confirmed objective response rates (ORRs) of 32% and 31% by investigator and blinded independent review, respectively, with a median progression-free survival of 5.5 months. Using preclinical studies, in silico modeling, and molecular dynamics simulations, we found that poziotinib sensitivity was highly dependent on the insertion location, with near-loop insertions (amino acids A767 to P772) being more sensitive than far-loop insertions, an observation confirmed clinically with ORRs of 46% and 0% observed in near versus far-loop, respectively (p = 0.0015). Putative mechanisms of acquired resistance included EGFR T790M, MET amplifications, and epithelial-to-mesenchymal transition (EMT). Our data demonstrate that poziotinib is active in EGFR exon 20-mutant NSCLC, although this activity is influenced by insertion location.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Exones/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas , Resultado del Tratamiento
9.
Mol Cancer Res ; 20(2): 280-292, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34654720

RESUMEN

Loss-of-function somatic mutations of STK11, a tumor suppressor gene encoding LKB1 that contributes to the altered metabolic phenotype of cancer cells, is the second most common event in lung adenocarcinomas and often co-occurs with activating KRAS mutations. Tumor cells lacking LKB1 display an aggressive phenotype, with uncontrolled cell growth and higher energetic and redox stress due to its failure to balance ATP and NADPH levels in response to cellular stimulus. The identification of effective therapeutic regimens for patients with LKB1-deficient non-small cell lung cancer (NSCLC) remains a major clinical need. Here, we report that LKB1-deficient NSCLC tumor cells displayed reduced basal levels of ATP and to a lesser extent other nucleotides, and markedly enhanced sensitivity to 8-Cl-adenosine (8-Cl-Ado), an energy-depleting nucleoside analog. Treatment with 8-Cl-Ado depleted intracellular ATP levels, raised redox stress, and induced cell death leading to a compensatory suppression of mTOR signaling in LKB1-intact, but not LKB1-deficient, cells. Proteomic analysis revealed that the MAPK/MEK/ERK and PI3K/AKT pathways were activated in response to 8-Cl-Ado treatment and targeting these pathways enhanced the antitumor efficacy of 8-Cl-Ado. IMPLICATIONS: Together, our findings demonstrate that LKB1-deficient tumor cells are selectively sensitive to 8-Cl-Ado and suggest that therapeutic approaches targeting vulnerable energy stores combined with signaling pathway inhibitors merit further investigation for this patient population.


Asunto(s)
2-Cloroadenosina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , 2-Cloroadenosina/farmacología , 2-Cloroadenosina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Homeostasis , Humanos , Neoplasias Pulmonares/patología , Mutación , Oxidación-Reducción , Transducción de Señal , Transfección
10.
J Biol Chem ; 297(5): 101163, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481841

RESUMEN

Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non-small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53ß and p53γ, comprising exons 1 to 9ß or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53ß and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Células A549 , Animales , Humanos , Ratones , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética
11.
Nature ; 597(7878): 732-737, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526717

RESUMEN

Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18-21 and are established driver mutations in non-small cell lung cancer (NSCLC)1-3. Targeted therapies are approved for patients with 'classical' mutations and a small number of other mutations4-6. However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown1,3,7-10. Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure-function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure-function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Afatinib/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos , Receptores ErbB/genética , Exones , Femenino , Humanos , Neoplasias Pulmonares/genética , Ratones , Simulación del Acoplamiento Molecular , Mutación , Relación Estructura-Actividad
12.
Cancer Cell ; 39(9): 1178-1180, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34388379

RESUMEN

The randomized ARTEMIS study demonstrates that adding the VEGF inhibitor bevacizumab to the EGFR inhibitor erlotinib improves progression-free survival in EGFR mutant non-small-cell lung cancer by more than 6 months, with even greater benefits seen in patients with brain metastases and EGFR L858R mutation. This provides further evidence for the tailored use of VEGF/EGFR combinations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Clorhidrato de Erlotinib , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor A de Crecimiento Endotelial Vascular
13.
J Thorac Oncol ; 16(11): 1821-1839, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34274504

RESUMEN

INTRODUCTION: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS: Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS: We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-ß, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS: These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Bronquios , Humanos , Pulmón , Peptidil-Dipeptidasa A , SARS-CoV-2
14.
J Thorac Oncol ; 16(12): 2051-2064, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34311109

RESUMEN

INTRODUCTION: Subgroup analyses from clinical studies have suggested that among patients with metastatic NSCLC receiving chemotherapy, females may derive less benefit from the addition of the vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab (BV) than males. This has raised the question of whether estrogen may affect the response to antiangiogenic therapy. METHODS: To address this, we investigated the effects of estrogen on tumor growth, angiogenesis, and the response to BV in human xenograft models of NSCLC. RESULTS: We observed that estrogen induced marked resistance to BV, which was accompanied by a 2.3-fold increase in tumor vascular pericyte coverage (p = 0.01) and an up-regulation of proangiogenic factors, VEGF and platelet-derived growth factor-BB. We also investigated the role of infiltrating myeloid cells, a population that has been associated with resistance to anti-VEGF therapies. We observed that estrogen induced a greater than twofold increase (p = 0.001) in the recruitment of tumor-infiltrating myeloid cells and concomitant increases in the myeloid recruitment factors, G-CSF and CXCL1. Blockade of the estrogen receptor pathway using fulvestrant resensitized tumors to VEGF targeting as evidenced by reduced tumor vasculature and an increase in overall survival in our NSCLC xenograft models. CONCLUSIONS: Collectively, these data provide evidence that estrogen may promote resistance to VEGF-targeted therapies, potentially by enhancing pericyte coverage and myeloid recruitment, and suggest that estrogen receptor blockade merits further investigation as an approach to enhance the effects of antiangiogenic therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Bevacizumab , Resistencia a Antineoplásicos , Estrógenos/farmacología , Neoplasias Pulmonares , Inhibidores de la Angiogénesis/farmacología , Animales , Bevacizumab/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
15.
J Thorac Oncol ; 16(4): 583-600, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33388477

RESUMEN

INTRODUCTION: Lung adenocarcinomas harboring EGFR mutations do not respond to immune checkpoint blockade therapy and their EGFR wildtype counterpart. The mechanisms underlying this lack of clinical response have been investigated but remain incompletely understood. METHODS: We analyzed three cohorts of resected lung adenocarcinomas (Profiling of Resistance Patterns of Oncogenic Signaling Pathways in Evaluation of Cancer of Thorax, Immune Genomic Profiling of NSCLC, and The Cancer Genome Atlas) and compared tumor immune microenvironment of EGFR-mutant tumors to EGFR wildtype tumors, to identify actionable regulators to target and potentially enhance the treatment response. RESULTS: EGFR-mutant NSCLC exhibited low programmed death-ligand 1, low tumor mutational burden, decreased number of cytotoxic T cells, and low T cell receptor clonality, consistent with an immune-inert phenotype, though T cell expansion ex vivo was preserved. In an analysis of 75 immune checkpoint genes, the top up-regulated genes in the EGFR-mutant tumors (NT5E and ADORA1) belonged to the CD73/adenosine pathway. Single-cell analysis revealed that the tumor cell population expressed CD73, both in the treatment-naive and resistant tumors. Using coculture systems with EGFR-mutant NSCLC cells, T regulatory cell proportion was decreased with CD73 knockdown. In an immune-competent mouse model of EGFR-mutant lung cancer, the CD73/adenosine pathway was markedly up-regulated and CD73 blockade significantly inhibited tumor growth. CONCLUSIONS: Our work revealed that EGFR-mutant NSCLC has an immune-inert phenotype. We identified the CD73/adenosine pathway as a potential therapeutic target for EGFR-mutant NSCLC.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenosina , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Mutación , Microambiente Tumoral
16.
Cancer Prev Res (Phila) ; 14(3): 313-324, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33277316

RESUMEN

We have previously demonstrated that PD-1 blockade decreased the incidence of high-grade dysplasia in a carcinogen-induced murine model of oral squamous cell carcinoma (OSCC). It remains unknown, however, whether there are additional factors involved in escape from immune surveillance that could serve as additional targets for immunoprevention. We performed this study to further characterize the immune landscape of oral premalignant lesions (OPL) and determine the impact of targeting of the PD-1, CTLA-4, CD40, or OX40 pathways on the development of OPLs and oral carcinomas in the 4-nitroquinoline 1-oxide model. The immune pathways were targeted using mAbs or, in the case of the PD-1/PD-L1 pathway, using PD-L1-knockout (PD-L1ko) mice. After intervention, tongues and cervical lymph nodes were harvested and analyzed for malignant progression and modulation of the immune milieu, respectively. Targeting of CD40 with an agonist mAb was the most effective treatment to reduce transition of OPLs to OSCC; PD-1 alone or in combination with CTLA-4 inhibition, or PD-L1ko, also reduced progression of OPLs to OSCC, albeit to a lesser extent. Distinct patterns of immune system modulation were observed for the CD40 agonists compared with blockade of the PD-1/PD-L1 axis with or without CTLA-4 blockade; CD40 agonist generated a lasting expansion of experienced/memory cytotoxic T lymphocytes and M1 macrophages, whereas PD-1/CTLA-4 blockade resulted in a pronounced depletion of regulatory T cells among other changes. These data suggest that distinct approaches may be used for targeting different steps in the development of OSCC, and that CD40 agonists merit investigation as potential immunoprevention agents in this setting. PREVENTION RELEVANCE: PD-1/PD-L1 pathway blockade, as well as activation of the CD40 pathway, were able to prevent OPL progression into invasive OSCC in a murine model. A distinct pattern of immune modulation was observed when either the CD40 or the PD-1/PD-L1 pathways were targeted.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígenos CD40/antagonistas & inhibidores , Carcinoma de Células Escamosas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Lesiones Precancerosas/tratamiento farmacológico , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Femenino , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología
17.
J Thorac Oncol ; 16(3): 439-451, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309987

RESUMEN

INTRODUCTION: The treatment of patients with EGFR-mutant NSCLC with vascular endothelial growth factor (VEGF) inhibitors in combination with EGFR inhibitors provides a greater benefit than EGFR inhibition alone, suggesting that EGFR mutation status may define a patient subgroup with greater benefit from VEGF blockade. The mechanisms driving this potentially enhanced VEGF dependence are unknown. METHODS: We analyzed the effect of EGFR inhibition on VEGF and HIF-1α in NSCLC models in vitro and in vivo. We determined the efficacy of VEGF inhibition in xenografts and analyzed the impact of acquired EGFR inhibitor resistance on VEGF and HIF-1α. RESULTS: NSCLC cells with EGFR-activating mutations exhibited altered regulation of VEGF compared with EGFR wild-type cells. In EGFR-mutant cells, EGFR, not hypoxia, was the dominant regulator of HIF-1α and VEGF. NSCLC tumor models bearing classical or exon 20 EGFR mutations were more sensitive to VEGF inhibition than EGFR wild-type tumors, and a combination of VEGF and EGFR inhibition delayed tumor progression. In models of acquired EGFR inhibitor resistance, whereas VEGF remained overexpressed, the hypoxia-independent expression of HIF-1α was delinked from EGFR signaling, and EGFR inhibition no longer diminished HIF-1α or VEGF expression. CONCLUSIONS: In EGFR-mutant NSCLC, EGFR signaling is the dominant regulator of HIF-1α and VEGF in a hypoxia-independent manner, hijacking an important cellular response regulating tumor aggressiveness. Cells with acquired EGFR inhibitor resistance retained elevated expression of HIF-1α and VEGF, and the pathways were no longer EGFR-regulated. This supports VEGF targeting in EGFR-mutant tumors in the EGFR inhibitor-naive and refractory settings.


Asunto(s)
Neoplasias Pulmonares , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Fenotipo , Factor A de Crecimiento Endotelial Vascular/genética
18.
bioRxiv ; 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32577652

RESUMEN

COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.

19.
J Thorac Oncol ; 16(2): 205-215, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33096270

RESUMEN

The VEGF pathway has been recognized as a key mediator of angiogenesis to support tumorigenesis. Multiple therapeutic agents targeting VEGF and VEGF receptors have been developed and approved for use in NSCLCs. Preclinical studies have found that the VEGF and EGFR pathways share common downstream signaling, and these pathways can function exclusively of one another during oncogenesis. In EGFR-mutant NSCLCs, up-regulated EGFR signaling increases VEGF through hypoxia-independent mechanisms, and elevated VEGF, in turn, contributes to the emergence of resistance to EGFR tyrosine kinase inhibitors (TKIs). In clinical trials, the addition of anti-VEGF therapy to EGFR TKIs considerably improved clinical outcomes. In recently reported large randomized studies, the addition of bevacizumab or ramucirumab to EGFR TKIs substantially improved progression-free survival in patients with TKI-naive EGFR-mutant NSCLC. This article reviews the preclinical and clinical data supporting dual inhibition of EGFR and VEGF in EGFR-mutant NSCLC as a way to improve patient outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor A de Crecimiento Endotelial Vascular
20.
Lung Cancer ; 149: 33-40, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956986

RESUMEN

BACKGROUND: Osimertinib is the treatment of choice for advanced EGFR-mutant non-small cell lung cancer (NSCLC). However, novel strategies to improve the duration of disease control are still urgently needed. Aspirin has been shown to decrease cancer incidence and improve outcomes in various malignancies. Therefore, we evaluated a cohort of patients who received osimertinib with or without concurrent use of aspirin to assess whether the addition of aspirin may lead to improved clinical outcomes. METHODS: MD Anderson Cancer Center GEMINI database was retrospectively queried for EGFR-mutant NSCLC patients who received osimertinib with or without concurrent use of aspirin for progression-free survival (PFS) and overall survival (OS). RESULTS: A total of 365 patients were identified including 77 which had concurrent use of aspirin. Patients in the aspirin-osimertinib group had significantly improved PFS (21.3 vs 11.6 months; HR, 0.52; 95 % CI, 0.38-0.70) and OS (Not reached vs 32.3 months; HR, 0.56; 95 % CI, 0.35-0.91) compared to osimertinib group. In subgroup analyses, the aspirin-associated PFS benefit was observed in patients with and without central nervous system (CNS) metastases, as well as in osimertinib first-line setting and in subsequent line setting. The median PFS in EGFR 19Del patients was longer than EGFR L858R patients with osimertinib, and when aspirin was added, the median PFS significantly improved in both groups regardless of lines of therapy. The benefit from aspirin was independent of age, gender, TP53 mutational status, or PD-L1 positivity. CONCLUSION: Concurrent aspirin use with osimertinib in EGFR-mutant NSCLC patients was associated with improved survival, regardless of lines of therapy, CNS metastatic status, EGFR mutation type, age, gender, TP53, and PD-L1 status.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acrilamidas , Compuestos de Anilina , Aspirina , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...