Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 117(3): 944-955, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947292

RESUMEN

Scots pine (Pinus sylvestris L.) is one of the most widespread and economically important conifer species in the world. Applications like genomic selection and association studies, which could help accelerate breeding cycles, are challenging in Scots pine because of its large and repetitive genome. For this reason, genotyping tools for conifer species, and in particular for Scots pine, are commonly based on transcribed regions of the genome. In this article, we present the Axiom Psyl50K array, the first single nucleotide polymorphism (SNP) genotyping array for Scots pine based on whole-genome resequencing, that represents both genic and intergenic regions. This array was designed following a two-step procedure: first, 192 trees were sequenced, and a 430K SNP screening array was constructed. Then, 480 samples, including haploid megagametophytes, full-sib family trios, breeding population, and range-wide individuals from across Eurasia were genotyped with the screening array. The best 50K SNPs were selected based on quality, replicability, distribution across the draft genome assembly, balance between genic and intergenic regions, and genotype-environment and genotype-phenotype associations. Of the final 49 877 probes tiled in the array, 20 372 (40.84%) occur inside gene models, while the rest lie in intergenic regions. We also show that the Psyl50K array can yield enough high-confidence SNPs for genetic studies in pine species from North America and Eurasia. This new genotyping tool will be a valuable resource for high-throughput fundamental and applied research of Scots pine and other pine species.


Asunto(s)
Pinus sylvestris , Pinus , Humanos , Pinus sylvestris/genética , Polimorfismo de Nucleótido Simple/genética , Genotipo , Fitomejoramiento , Pinus/genética , ADN Intergénico
2.
Proc Natl Acad Sci U S A ; 120(48): e2311226120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991940

RESUMEN

In temperate and boreal regions, perennial plants adapt their annual growth cycle to the change of seasons. In natural forests, juvenile seedlings usually display longer growth seasons compared to adult trees to ensure their establishment and survival under canopy shade. However, how trees adjust their annual growth according to their age is not known. In this study, we show that age-dependent seasonal growth cessation is genetically controlled and found that the miR156-SPL3/5 module, a key regulon of vegetative phase change (VPC), also triggers age-dependent growth cessation in Populus trees. We show that miR156 promotes shoot elongation during vegetative growth, and its targets SPL3/5s function in the same pathway but as repressors. We find that the miR156-SPL3/5s regulon controls growth cessation in both leaves and shoot apices and through multiple pathways, but with a different mechanism compared to how the miR156-SPL regulon controls VPC in annual plants. Taken together, our results reveal an age-dependent genetic network in mediating seasonal growth cessation, a key phenological process in the climate adaptation of perennial trees.


Asunto(s)
Populus , Estaciones del Año , Populus/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Árboles
3.
EMBO Rep ; 24(5): e57106, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37039030

RESUMEN

Climate change is having dramatic effects on forest health and growth - tree genomics provides tools for understanding and mitigating these effects.


Asunto(s)
Cambio Climático , Bosques , Árboles/genética
4.
New Phytol ; 236(5): 1951-1963, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36076311

RESUMEN

Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies.


Asunto(s)
Picea , Tracheophyta , Picea/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema/metabolismo , Reproducción/genética , Tracheophyta/metabolismo
5.
Plant Physiol ; 190(4): 2350-2365, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35984294

RESUMEN

With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Ácidos Indolacéticos/metabolismo , Zea mays/metabolismo
6.
Curr Biol ; 32(12): R630-R634, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35728543

RESUMEN

Plants growing in temperate and boreal regions of the world have to face strikingly different environmental conditions during summer and winter. Being sessile organisms, plants have had to develop various strategies to adapt to these changes in light, temperature, and water availability, thereby optimizing their 'economy of growth'. While annual plants can endure unfavorable winter conditions in the form of a seed, or under a protective cover of thick snow, perennial plants such as trees adapt by going into a stage of deep sleep called winter dormancy. To enter dormancy, vegetative growth is stopped in the late summer or early autumn and the shoots are converted into buds, where the shoot apical meristems are protected by tightly closed and hardened bud scales (Figures 1 and 2). At the same time, cold hardiness develops and the need for water and nutrient uptake is drastically reduced. Deciduous trees also go through leaf senescence whereby the leaves develop their autumn colors and are shed (Figure 1A). The trees then spend the beginning of the winter in a state of deep sleep in which they are completely unreceptive to any environmental signals telling them to wake up. However, as winter progresses, the trees are gradually released from this slumber and will eventually flush their buds in the spring. Vegetative growth then resumes with the formation of new leaves and shoots during summer until the trees again go into growth cessation and the cycle is closed (Figures 1 and 2). This cycle of growth and dormancy is central for the ability of trees to adapt to growth at different latitudes and elevations. The further north, or the higher the elevation at which the trees grow, the earlier in the season the trees enter growth cessation and the later they flush their buds in the spring. This is because meteorological winter arrives earlier in the season and lasts longer into the spring. The trees therefore have to stop growth earlier in the season to ensure that they have enough time to complete bud formation and to develop cold hardiness and dormancy. They also have to be sure that winter is really over before flushing their buds. Winter dormancy is therefore a clear case of a trade-off between the length of the growing season and the protection against winter damage - a nice example of 'economy in biology', the theme of this special issue. This primer will briefly summarize what we know about the environmental signals that influence the annual growth cycle in trees, as well as our current understanding of the genetic pathways and molecular mechanisms regulated by these signals.


Asunto(s)
Hojas de la Planta , Árboles , Meristema , Latencia en las Plantas , Estaciones del Año , Agua
7.
Curr Biol ; 32(13): 2988-2996.e4, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35660141

RESUMEN

In temperate and boreal regions, perennials adapt their annual growth cycle to the change of seasons. These adaptations ensure survival in harsh environmental conditions, allowing growth at different latitudes and altitudes, and are therefore tightly regulated. Populus tree species cease growth and form terminal buds in autumn when photoperiod falls below a certain threshold.1 This is followed by establishment of dormancy and cold hardiness over the winter. At the center of the photoperiodic pathway in Populus is the gene FLOWERING LOCUS T2 (FT2), which is expressed during summer and harbors significant SNPs in its locus associated with timing of bud set.1-4 The paralogous gene FT1, on the other hand, is hyper-induced in chilling buds during winter.3,5 Even though its function is so far unknown, it has been suggested to be involved in the regulation of flowering and the release of winter dormancy.3,5 In this study, we employ CRISPR-Cas9-mediated gene editing to individually study the function of the FT-like genes in Populus trees. We show that while FT2 is required for vegetative growth during spring and summer and regulates the entry into dormancy, expression of FT1 is absolutely required for bud flush in spring. Gene expression profiling suggests that this function of FT1 is linked to the release of winter dormancy rather than to the regulation of bud flush per se. These data show how FT duplication and sub-functionalization have allowed Populus trees to regulate two completely different and major developmental control points during the yearly growth cycle.


Asunto(s)
Populus , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Reproducción , Estaciones del Año , Árboles/genética
8.
Front Plant Sci ; 13: 823019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251092

RESUMEN

SHORT VEGETATIVE PHASE (SVP) is an important regulator of FLOWERING LOCUS T (FT) in the thermosensory pathway of Arabidopsis. It is a negative regulator of flowering and represses FT transcription. In poplar trees, FT2 is central for the photoperiodic control of growth cessation, which also requires the decrease of bioactive gibberellins (GAs). In angiosperm trees, genes similar to SVP, sometimes named DORMANCY-ASSOCIATED MADS-BOX genes, control temperature-mediated bud dormancy. Here we show that SVL, an SVP ortholog in aspen trees, besides its role in controlling dormancy through its expression in buds, is also contributing to the regulation of short day induced growth cessation and bud set through its expression in leaves. SVL is upregulated during short days in leaves and binds to the FT2 promoter to repress its transcription. It furthermore decreases the amount of active GAs, whose downregulation is essential for growth cessation, by repressing the transcription of GA20 oxidase. Finally, the SVL protein is more stable in colder temperatures, thus integrating the temperature signal into the response. We conclude that the molecular function of SVL in the photoperiodic pathway has been conserved between Arabidopsis and poplar trees, albeit the physiological process it controls has changed. SVL is thus both involved in regulating the photoperiod response in leaves, modulating the timing of growth cessation and bud set, and in the subsequent temperature regulation of dormancy in the buds.

9.
Plant Physiol ; 187(4): 2435-2450, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34636903

RESUMEN

GIGANTEA (GI) genes have a central role in plant development and influence several processes. Hybrid aspen T89 (Populus tremula x tremuloides) trees with low GI expression engineered through RNAi show severely compromised growth. To study the effect of reduced GI expression on leaf traits with special emphasis on leaf senescence, we grafted GI-RNAi scions onto wild-type rootstocks and successfully restored growth of the scions. The RNAi line had a distorted leaf shape and reduced photosynthesis, probably caused by modulation of phloem or stomatal function, increased starch accumulation, a higher carbon-to-nitrogen ratio, and reduced capacity to withstand moderate light stress. GI-RNAi also induced senescence under long day (LD) and moderate light conditions. Furthermore, the GI-RNAi lines were affected in their capacity to respond to "autumn environmental cues" inducing senescence, a type of leaf senescence that has physiological and biochemical characteristics that differ from those of senescence induced directly by stress under LD conditions. Overexpression of GI delayed senescence under simulated autumn conditions. The two different effects on leaf senescence under LD or simulated autumn conditions were not affected by the expression of FLOWERING LOCUS T. GI expression regulated leaf senescence locally-the phenotype followed the genotype of the branch, independent of its position on the tree-and trees with modified gene expression were affected in a similar way when grown in the field as under controlled conditions. Taken together, GI plays a central role in sensing environmental changes during autumn and determining the appropriate timing for leaf senescence in Populus.


Asunto(s)
Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Senescencia de la Planta/genética , Populus/fisiología , Árboles/fisiología , Proteínas de Plantas/metabolismo , Populus/genética , Árboles/genética
10.
N Biotechnol ; 64: 27-36, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34048978

RESUMEN

Genetically modified hybrid aspens (Populus tremula L. x P. tremuloides Michx.), selected for increased growth under controlled conditions, have been grown in highly replicated field trials to evaluate how the target trait (growth) translated to natural conditions. Moreover, the variation was compared among genotypes of ecologically important non-target traits: number of shoots, bud set, pathogen infection, amount of insect herbivory, composition of the insect herbivore community and flower bud induction. This variation was compared with the variation in a population of randomly selected natural accessions of P. tremula grown in common garden trials, to estimate how the "unintended variation" present in transgenic trees, which in the future may be commercialized, compares with natural variation. The natural variation in the traits was found to be typically significantly greater. The data suggest that when authorities evaluate the potential risks associated with a field experiment or commercial introduction of transgenic trees, risk evaluation should focus on target traits and that unintentional variation in non-target traits is of less concern.


Asunto(s)
Variación Genética , Plantas Modificadas Genéticamente , Populus , Fenotipo , Plantas Modificadas Genéticamente/genética , Populus/genética , Árboles/genética
11.
New Phytol ; 232(6): 2339-2352, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33735450

RESUMEN

The seasonally synchronized annual growth cycle that is regulated mainly by photoperiod and temperature cues is a crucial adaptive strategy for perennial plants in boreal and temperate ecosystems. Phytochrome B (phyB), as a light and thermal sensor, has been extensively studied in Arabidopsis. However, the specific mechanisms for how the phytochrome photoreceptors control the phenology in tree species remain poorly understood. We characterized the functions of PHYB genes and their downstream PHYTOCHROME INTERACTING FACTOR (PIF) targets in the regulation of shade avoidance and seasonal growth in hybrid aspen trees. We show that while phyB1 and phyB2, as phyB in other plants, act as suppressors of shoot elongation during vegetative growth, they act as promoters of tree seasonal growth. Furthermore, while the Populus homologs of both PIF4 and PIF8 are involved in the shade avoidance syndrome (SAS), only PIF8 plays a major role as a suppressor of seasonal growth. Our data suggest that the PHYB-PIF8 regulon controls seasonal growth through the regulation of FT and CENL1 expression while a genome-wide transcriptome analysis suggests how, in Populus trees, phyB coordinately regulates SAS responses and seasonal growth cessation.


Asunto(s)
Proteínas de Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ecosistema , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Estaciones del Año , Árboles/genética , Árboles/metabolismo
12.
New Phytol ; 226(1): 75-85, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31749215

RESUMEN

The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) peptide ligands in connection with their receptors are important players in cell-to-cell communications in plants. Here, we investigated the function of the Populus CLV3/ESR-RELATED 47 (PttCLE47) gene during secondary growth and wood formation in hybrid aspen (Populus tremula × tremuloides) using an RNA interference (RNAi) approach. Expression of PttCLE47 peaks in the vascular cambium. Silencing of the PttCLE47 gene expression affected lateral expansion of stems and decreased apical height growth and leaf size. In particular, PttCLE47 RNAi trees exhibited a narrower secondary xylem zone with less xylem cells/cell file. The reduced radial growth phenotype also correlated with a reduced number of cambial cell layers. In agreement with these results, expression of several cambial regulator genes was downregulated in the stems of the transgenic trees in comparison with controls. Altogether, these results suggest that the PttCLE47 gene is a major positive regulator of cambial activity in hybrid aspen, mainly promoting the production of secondary xylem. Furthermore, in contrast to previously characterized CLE genes expressed in the wood-forming zone, PttCLE47 appears to be active at its site of expression.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Populus , Cámbium/genética , Péptidos , Populus/genética , Madera , Xilema
14.
Front Plant Sci ; 9: 1625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483285

RESUMEN

Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister clade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this sub-clade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P. abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.

15.
New Phytol ; 220(2): 579-592, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29995985

RESUMEN

The Arabidopsis LEAFY (LFY) transcription factor is a key regulator of floral meristem emergence and identity. LFY interacts genetically and physically with UNUSUAL FLORAL ORGANS, a substrate adaptor of CULLIN1-RING ubiquitin ligase complexes (CRL1). The functionally redundant genes BLADE ON PETIOLE1 (BOP1) and -2 (BOP2) are potential candidates to regulate LFY activity and have recently been shown to be substrate adaptors of CULLIN3 (CUL3)-RING ubiquitin ligases (CRL3). We tested the hypothesis that LFY activity is controlled by BOPs and CUL3s in plants and that LFY is a substrate for ubiquitination by BOP-containing CRL3 complexes. When constitutively expressed, LFY activity is fully dependent on BOP2 as well as on CUL3A and B to regulate target genes such as APETALA1 and to induce ectopic flower formation. We also show that LFY and BOP2 proteins interact physically and that LFY-dependent ubiquitinated species are produced in vitro in a reconstituted cell-free CRL3 system in the presence of LFY, BOP2 and CUL3. This new post-translational regulation of LFY activity by CRL3 complexes makes it a unique transcription factor subjected to a positive dual regulation by both CRL1 and CRL3 complexes and suggests a novel mechanism for promoting flower development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cullin/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Cullin/genética , Genes de Plantas , Humanos , Mutación/genética , Fenotipo , Células Vegetales/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Unión Proteica , Ubiquitinación
16.
Genome Biol ; 19(1): 72, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866176

RESUMEN

BACKGROUND: The initiation of growth cessation and dormancy represent critical life-history trade-offs between survival and growth and have important fitness effects in perennial plants. Such adaptive life-history traits often show strong local adaptation along environmental gradients but, despite their importance, the genetic architecture of these traits remains poorly understood. RESULTS: We integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). A single genomic region containing the PtFT2 gene mediates local adaptation in the timing of bud set and explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affects the phenotypic variation in bud set that we observe in wild natural populations. CONCLUSIONS: Our results reveal a major effect locus that determines the timing of bud set and that has facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life-history trait is remarkable, given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.


Asunto(s)
Adaptación Fisiológica/genética , Sitios Genéticos/genética , Variación Genética/genética , Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Rasgos de la Historia de Vida , Fenotipo , Populus/genética
17.
New Phytol ; 218(4): 1491-1503, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29532940

RESUMEN

Survival of trees growing in temperate zones requires cycling between active growth and dormancy. This involves growth cessation in the autumn triggered by a photoperiod shorter than the critical day length. Variations in GIGANTEA (GI)-like genes have been associated with phenology in a range of different tree species, but characterization of the functions of these genes in the process is still lacking. We describe the identification of the Populus orthologs of GI and their critical role in short-day-induced growth cessation. Using ectopic expression and silencing, gene expression analysis, protein interaction and chromatin immunoprecipitation experiments, we show that PttGIs are likely to act in a complex with PttFKF1s (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) and PttCDFs (CYCLING DOF FACTOR) to control the expression of PttFT2, the key gene regulating short-day-induced growth cessation in Populus. In contrast to Arabidopsis, in which the GI-CONSTANS (CO)-FLOWERING LOCUS T (FT) regulon is a crucial day-length sensor for flowering time, our study suggests that, in Populus, PttCO-independent regulation of PttFT2 by PttGI is more important in the photoperiodic control of growth cessation and bud set.


Asunto(s)
Genes de Plantas , Proteínas de Plantas/genética , Populus/crecimiento & desarrollo , Populus/genética , Estaciones del Año , Ritmo Circadiano/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Proteínas de Plantas/metabolismo , Unión Proteica , Interferencia de ARN , Árboles/genética , Árboles/crecimiento & desarrollo , Regulación hacia Arriba/genética
18.
Plant Physiol ; 176(4): 2851-2870, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29487121

RESUMEN

Seasonal cues influence several aspects of the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation. We investigated seasonal changes in cambial activity, secondary cell wall formation, and tracheid cell death in woody tissues of Norway spruce (Picea abies) throughout one seasonal cycle. RNA sequencing was performed simultaneously in both the xylem and cambium/phloem tissues of the stem. Principal component analysis revealed gradual shifts in the transcriptomes that followed a chronological order throughout the season. A notable remodeling of the transcriptome was observed in the winter, with many genes having maximal expression during the coldest months of the year. A highly coexpressed set of monolignol biosynthesis genes showed high expression during the period of secondary cell wall formation as well as a second peak in midwinter. This midwinter peak in expression did not trigger lignin deposition, as determined by pyrolysis-gas chromatography/mass spectrometry. Coexpression consensus network analyses suggested the involvement of transcription factors belonging to the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES and MYELOBLASTOSIS-HOMEOBOX families in the seasonal control of secondary cell wall formation of tracheids. Interestingly, the lifetime of the latewood tracheids stretched beyond the winter dormancy period, correlating with a lack of cell death-related gene expression. Our transcriptomic analyses combined with phylogenetic and microscopic analyses also identified the cellulose and lignin biosynthetic genes and putative regulators for latewood formation and tracheid cell death in Norway spruce, providing a toolbox for further physiological and functional assays of these important phase transitions.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Picea/genética , Estaciones del Año , Madera/genética , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Celulosa/biosíntesis , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Lignina/biosíntesis , Noruega , Floema/genética , Floema/crecimiento & desarrollo , Floema/metabolismo , Picea/crecimiento & desarrollo , Picea/metabolismo , Análisis de Componente Principal , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
19.
PLoS One ; 13(3): e0192945, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29499063

RESUMEN

The terminal differentiation and elimination of the embryo-suspensor is the earliest manifestation of programmed cell death (PCD) during plant ontogenesis. Molecular regulation of suspensor PCD remains poorly understood. Norway spruce (Picea abies) embryos provide a powerful model for studying embryo development because of their large size, sequenced genome, and the possibility to obtain a large number of embryos at a specific developmental stage through somatic embryogenesis. Here, we have carried out global gene expression analysis of the Norway spruce embryo-suspensor versus embryonal mass (a gymnosperm analogue of embryo proper) using RNA sequencing. We have identified that suspensors have enhanced expression of the NAC domain-containing transcription factors, XND1 and ANAC075, previously shown to be involved in the initiation of developmental PCD in Arabidiopsis. The analysis has also revealed enhanced expression of Norway spruce homologues of the known executioners of both developmental and stress-induced cell deaths, such as metacaspase 9 (MC9), cysteine endopeptidase-1 (CEP1) and ribonuclease 3 (RNS3). Interestingly, a spruce homologue of bax inhibitor-1 (PaBI-1, for Picea abies BI-1), an evolutionarily conserved cell death suppressor, was likewise up-regulated in the embryo-suspensor. Since Arabidopsis BI-1 so far has been implicated only in the endoplasmic reticulum (ER)-stress induced cell death, we investigated its role in embryogenesis and suspensor PCD using RNA interference (RNAi). We have found that PaBI-1-deficient lines formed a large number of abnormal embryos with suppressed suspensor elongation and disturbed polarity. Cytochemical staining of suspensor cells has revealed that PaBI-1 deficiency suppresses vacuolar cell death and induces necrotic type of cell death previously shown to compromise embryo development. This study demonstrates that a large number of cell-death components are conserved between angiosperms and gymnosperms and establishes a new role for BI-1 in the progression of vacuolar cell death.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Picea , Proteínas de Plantas , Semillas , Factores de Transcripción , Muerte Celular/fisiología , Estrés del Retículo Endoplásmico/fisiología , Picea/citología , Picea/genética , Picea/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Semillas/citología , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
20.
Physiol Plant ; 162(1): 123-134, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28591431

RESUMEN

Autumn senescence in mature aspens, grown under natural conditions, is initiated at almost the same date every year. The mechanism of such precise timing is not understood but we have previously shown that the signal must be derived from light. We studied variation in bud set and autumn senescence in a collection of 116 natural Eurasian aspen (Populus tremula) genotypes, from 12 populations in Sweden and planted in one northern and one southern common garden, to test the hypothesis that onset of autumn senescence is triggered by day length. We confirmed that, although bud set seemed to be triggered by a critical photoperiod/day length, other factors may influence it. The data on initiation of autumn senescence, on the other hand, were incompatible with the trigger being the day length per se, hence the trigger must be some other light-dependent factor.


Asunto(s)
Fotoperiodo , Populus/crecimiento & desarrollo , Estaciones del Año , Adaptación Fisiológica , Flores/fisiología , Congelación , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...