Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inhal Toxicol ; 34(5-6): 159-170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35475948

RESUMEN

BACKGROUND: Adverse cardiovascular effects are associated with both diesel exhaust and road traffic noise, but these exposures are hard to disentangle epidemiologically. We used an experimental setup to evaluate the impact of diesel exhaust particles and traffic noise, alone and combined, on intermediary outcomes related to the autonomic nervous system and increased cardiovascular risk. METHODS: In a controlled chamber 18 healthy adults were exposed to four scenarios in a randomized cross-over fashion. Each exposure scenario consisted of either filtered (clean) air or diesel engine exhaust (particle mass concentrations around 300 µg/m3), and either low (46 dB(A)) or high (75 dB(A)) levels of traffic noise for 3 h at rest. ECG was recorded for 10-min periods before and during each exposure type, and frequency-domain heart rate variability (HRV) computed. Endothelial dysfunction and arterial stiffness were assessed after each exposure using EndoPAT 2000. RESULTS: Compared to control exposure, HRV in the high frequency band decreased during exposure to diesel exhaust, both alone and combined with noise, but not during noise exposure only. These differences were more pronounced in women. We observed no synergistic effects of combined exposure, and no significant differences between exposure scenarios for other HRV indices, endothelial function or arterial stiffness. CONCLUSION: Three-hour exposure to diesel exhaust, but not noise, was associated with decreased HRV in the high frequency band. This indicates activation of irritant receptor-mediated autonomic reflexes, a possible mechanism for the cardiovascular risks of diesel exposure. There was no effect on endothelial dysfunction or arterial stiffness after exposure.


Asunto(s)
Sistema Cardiovascular , Emisiones de Vehículos , Adulto , Femenino , Frecuencia Cardíaca , Humanos , Pulmón/química , Material Particulado/toxicidad , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
2.
Ann Work Expo Health ; 62(7): 828-839, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29931293

RESUMEN

The risk among asphalt workers of developing adverse health effects may increase due to their occupational exposure. One area of special concern arises when rubber granules are mixed into bitumen to enhance asphalt properties. This research characterizes and compares bitumen and rubber bitumen regarding the emissions of and workers' exposure to particulates, polycyclic aromatic hydrocarbons (PAHs) and benzothiazole. A laboratory and a field study were carried out. In the laboratory, two types of bitumen, one with and one without rubber, were heated up to two temperatures (140°C and 160°C). The concentrations and chemical compositions of the emissions were determined. In the field at asphalt work sites, both emissions and worker exposure measurements were performed. The methods applied included direct-reading sampling techniques next to the asphalt work area and personal sampling techniques on asphalt workers. The exposure measurements on asphalt workers for respirable dust, total dust, particle number and mass, and total PAH concentrations showed similar concentrations when both standard and rubber bitumen were used. The asphalt-surfacing machine operators were the workers with the highest observed exposure followed by the screed operators and roller drivers. Both laboratory and field measurements showed higher concentrations of benzothiazole when rubber bitumen was used, up to 7.5 times higher in the laboratory. The levels of naphthalene, benzo(a)pyrene, and total particles were lower for both types compared with the Swedish occupational exposure limits, 8-h time weighted average concentrations. Benzo(a)pyrene exceeded however the health-based guideline value given by the WHO for both types of bitumen. The study concludes that several air pollutants such as benzothiazole and PAHs are emitted into the air during asphalt work, but it is not evident if exposure to rubber bitumen possesses a higher risk than exposure to standard bitumen in terms of asphalt worker exposure.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Exposición Profesional/análisis , Goma/análisis , Benzotiazoles/análisis , Polvo , Humanos , Hidrocarburos/química , Exposición por Inhalación/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Goma/química
3.
Ann Occup Hyg ; 60(4): 493-512, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26748380

RESUMEN

INTRODUCTION: An increased production and use of carbon nanotubes (CNTs) is occurring worldwide. In parallel, a growing concern is emerging on the adverse effects the unintentional inhalation of CNTs can have on humans. There is currently a debate regarding which exposure metrics and measurement strategies are the most relevant to investigate workplace exposures to CNTs. This study investigated workplace CNT emissions using a combination of time-integrated filter sampling for scanning electron microscopy (SEM) and direct reading aerosol instruments (DRIs). MATERIAL AND METHODS: Field measurements were performed during small-scale manufacturing of multiwalled carbon nanotubes using the arc discharge technique. Measurements with highly time- and size-resolved DRI techniques were carried out both in the emission and background (far-field) zones. Novel classifications and counting criteria were set up for the SEM method. Three classes of CNT-containing particles were defined: type 1: particles with aspect ratio length:width >3:1 (fibrous particles); type 2: particles without fibre characteristics but with high CNT content; and type 3: particles with visible embedded CNTs. RESULTS: Offline sampling using SEM showed emissions of CNT-containing particles in 5 out of 11 work tasks. The particles were classified into the three classes, of which type 1, fibrous CNT particles contributed 37%. The concentration of all CNT-containing particles and the occurrence of the particle classes varied strongly between work tasks. Based on the emission measurements, it was assessed that more than 85% of the exposure originated from open handling of CNT powder during the Sieving, mechanical work-up, and packaging work task. The DRI measurements provided complementary information, which combined with SEM provided information on: (i) the background adjusted emission concentration from each work task in different particle size ranges, (ii) identification of the key procedures in each work task that lead to emission peaks, (iii) identification of emission events that affect the background, thereby leading to far-field exposure risks for workers other than the operator of the work task, and (iv) the fraction of particles emitted from each source that contains CNTs. CONCLUSIONS: There is an urgent need for a standardized/harmonized method for electron microscopy (EM) analysis of CNTs. The SEM method developed in this study can form the basis for such a harmonized protocol for the counting of CNTs. The size-resolved DRI techniques are commonly not specific enough to selective analysis of CNT-containing particles and thus cannot yet replace offline time-integrated filter sampling followed by SEM. A combination of EM and DRI techniques offers the most complete characterization of workplace emissions of CNTs today.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/métodos , Microscopía Electrónica de Rastreo , Nanotubos de Carbono/análisis , Exposición Profesional/análisis , Aerosoles/análisis , Humanos , Exposición por Inhalación/análisis , Microscopía Electrónica de Rastreo/métodos , Tamaño de la Partícula
4.
Ann Occup Hyg ; 60(1): 90-100, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26371279

RESUMEN

Respiratory symptoms among hairdressers are often ascribed to the use of bleaching powders that contain persulfate salts. Such salts can act as allergens and airway irritants but the mechanisms behind the negative health effects are not fully known. In order to understand why some hairdressers experience respiratory symptoms during, and after, sessions of hair bleaching, it is of importance to characterize how exposure occurs. In this work we used time and particle size resolved instrumentation with the aim to measure the concentration of particles that hairdressers are exposed to during sessions of hair bleaching. We also used filter samples to collect particles for quantitative determination of persulfate (S2O8(2-)) content and for analysis by light microscopy. Two different types of bleaching powders were used, one marked as dust-free and one without this marking (denoted regular). The time resolved instrumentation revealed that particles <10 µm were emitted, specifically when the regular powder was prepared and mixed with hydrogen peroxide. In contrast to other research our work also revealed that supercoarse particles (>10 µm) were emitted during application of the bleaching, when both the regular and the dust-free powders were used. The measured level of persulfate, sampled in the breathing zone of the hairdressers, was on average 26 µg m(-3) when the regular powder was used and 11 µg m(-3) when the dust-free powder was used. This indicates that use of dust-free powder does not eliminate exposure to persulfates, it only lowers the concentration. We show that the site of sampling, or position of the hairdresser with regards to the hair being bleached, is of high importance in the determination of persulfate levels and exposure. This work focuses on the physical and chemical characterization of the particles released to the air and the results are important for accurate exposure assessments. Accurate assessments may in turn lead to a better understanding of why some hairdressers experience respiratory symptoms from hair bleaching sessions.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Industria de la Belleza , Blanqueadores del Pelo/análisis , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Alérgenos/análisis , Polvo/análisis , Humanos , Tamaño de la Partícula , Compuestos de Sodio/análisis , Sulfatos/análisis
5.
Ann Occup Hyg ; 59(7): 836-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26122528

RESUMEN

BACKGROUND: The industrial use of novel-manufactured nanomaterials such as carbon nanotubes and carbon nanodiscs is increasing globally. Occupational exposure can occur during production, downstream use, and disposal. The health effects of many nanomaterials are not yet fully characterized and to handle nano-objects, their aggregates and agglomerates >100nm (NOAA), a high degree of control measures and personal protective equipment are required. The emission of airborne NOAA during production and handling can contaminate workplace surfaces with dust, which can be resuspended resulting in secondary inhalation exposures and dermal exposures. This study surveys the presence of carbon-based nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) and carbon nanodiscs, as surface contamination at a small-scale producer using a novel tape sampling method. METHODS: Eighteen different surfaces at a small-scale producer were sampled with an adhesive tape sampling method. The surfaces selected were associated with the production and handling of MWCNT powder in the near-field zone. Surfaces in the far-field zone were also sampled. In addition, tape stripping of the skin was performed on one worker. The tape samples were analysed with scanning electron microscopy to detect the carbon-based NOAA. Air sampling with a personal impactor was also performed on a worker who was producing MWCNTs the same day as the tape samples were collected. RESULTS: MWCNTs were detected in 50% of the collected tape samples and carbon nanodiscs in 17%. MWCNTs and carbon nanodiscs were identified in all parts of the workplace, thus, increasing the risk for secondary inhalation and dermal exposure of the workers. Both airborne MWCNTs and carbon nanodiscs were detected in the personal impactor samples. The tape-strip samples from the worker showed no presence of carbon-containing nanoparticles. CONCLUSIONS: Tape sampling is a functional method for detecting surface contamination of carbon-based NOAA and for exposure control during production at potentially any workplace that produces or handles such manufactured nanomaterials. With the tape method, it is possible to monitor if a potential for secondary inhalation exposure or dermal exposure exists through resuspension of dust deposited on workplace surfaces. By means of air sampling, we could confirm that carbon nanodiscs were resuspended into the air at the workplace even though they were not handled during that particular work shift. MWCNTs were detected in the air samples, but can have been derived from either resuspension or from the work tasks with MWCNTs that were performed during the air sampling. Tape sampling is a complementary method to air sampling and together these two methods provide a better view of the hygienic situation in workplaces where NOAA can be emitted into work environments.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/instrumentación , Nanotubos de Carbono/análisis , Exposición Profesional/análisis , Lugar de Trabajo , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Humanos , Industrias , Exposición por Inhalación/análisis , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
6.
Environ Sci Technol ; 48(11): 6300-8, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24798545

RESUMEN

In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50-400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.


Asunto(s)
Aerosoles/química , Ciudades , Material Particulado/química , Emisiones de Vehículos/análisis , Aerosoles/análisis , Dinamarca , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Material Particulado/análisis , Factores de Tiempo
7.
Ann Occup Hyg ; 58(3): 355-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24389082

RESUMEN

BACKGROUND: The production and use of carbon nanotubes (CNTs) is rapidly growing. With increased production, there is potential that the number of occupational exposed workers will rapidly increase. Toxicological studies on rats have shown effects in the lungs, e.g., inflammation, granuloma formation, and fibrosis after repeated inhalation exposure to some forms of multi-walled CNTs (MWCNTs). Still, when it comes to health effects, it is unknown which dose metric is most relevant. Limited exposure data for CNTs exist today and no legally enforced occupational exposure limits are yet established. The aim of this work was to quantify the occupational exposures and emissions during arc discharge production, purification, and functionalization of MWCNTs. The CNT material handled typically had a mean length <5 µm. Since most of the collected airborne CNTs did not fulfil the World Health Organization fibre dimensions (79% of the counted CNT-containing particles) and since no microscopy-based method for counting of CNTs exists, we decided to count all particle that contained CNTs. To investigate correlations between the used exposure metrics, Pearson correlation coefficient was used. METHODS: Exposure measurements were performed at a small-scale producer of MWCNTs and respirable fractions of dust concentrations, elemental carbon (EC) concentrations, and number concentrations of CNT-containing particles were measured in the workers' breathing zones with filter-based methods during work. Additionally, emission measurements near the source were carried out during different work tasks. Respirable dust was gravimetrically determined; EC was analysed with thermal-optical analysis and the number of CNT-containing particles was analysed with scanning electron microscopy. RESULTS: For the personal exposure measurements, respirable dust ranged between <73 and 93 µg m(-3), EC ranged between <0.08 and 7.4 µg C m(-3), and number concentration of CNT-containing particles ranged between 0.04 and 2.0 cm(-3). For the emission measurements, respirable dust ranged between <2800 and 6800 µg m(-3), EC ranged between 0.05 and 550 µg C m(-3), and number concentration of CNT-containing particles ranged between <0.20 and 11cm(-3). CONCLUSIONS: The highest exposure to CNTs occurred during production of CNTs. The highest emitted number concentration of CNT-containing particles occurred in the sieving, mechanical work-up, pouring, weighing, and packaging of CNT powder during the production stage. To be able to quantify exposures and emissions of CNTs, a selective and sensitive method is needed. Limitations with measuring EC and respirable dust are that these exposure metrics do not measure CNTs specifically. Only filter-based methods with electron microscopy analysis are, to date, selective and sensitive enough. This study showed that counting of CNT-containing particles is the method that fulfils those criteria and is therefore the method recommended for future quantification of CNT exposures. However, CNTs could be highly toxic not only because of their length but also because they could contain, for example transition metals and polycyclic aromatic hydrocarbons, or have surface defects. Lack of standardized counting criteria for CNTs to be applied at the electron microscopy analysis is a limiting factor, which makes it difficult to compare exposure data from different studies.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/instrumentación , Nanotubos de Carbono/análisis , Nanotubos de Carbono/toxicidad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Polvo/análisis , Monitoreo del Ambiente/métodos , Filtración/métodos , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/prevención & control , Límite de Detección , Pulmón/efectos de los fármacos , Microscopía Electrónica de Rastreo , Exposición Profesional/análisis , Tamaño de la Partícula , Dispositivos de Protección Respiratoria/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA