Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 18(10): 1713-21, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16503395

RESUMEN

Caveolae, plasma membrane invaginations particularly abundant in adipocytes, have been suggested to be important in organizing insulin signalling. Insulin-induced activation of the membrane bound cAMP degrading enzyme, phosphodiesterase 3B (PDE3B) is a key step in insulin-mediated inhibition of lipolysis and is also involved in the regulation of insulin-mediated glucose uptake and lipogenesis in adipocytes. The aim of this work was to evaluate whether PDE3B is associated with caveolae. Subcellular fractionation of primary rat and mouse adipocytes demonstrated the presence of PDE3B in endoplasmic reticulum and plasma membrane fractions. The plasma membrane PDE3B was further analyzed by detergent treatment at 4 degrees C, which did not solubilize PDE3B, indicating an association of PDE3B with lipid rafts. Detergent-treated plasma membranes were studied using Superose-6 chromatography which demonstrated co-elution of PDE3B with caveolae and lipid raft markers (caveolin-1, flotillin-1 and cholesterol) at a Mw of >4000 kDa. On sucrose density gradient centrifugation of sonicated plasma membranes, a method known to enrich caveolae, PDE3B co-migrated with the caveolae markers. Immunoprecipitation of caveolin-1 using anti caveolin-1 antibodies co-immunoprecipitated PDE3B and immunoprecipitation of flag-PDE3B from adipocytes infected with a flag-PDE3B adenovirus resulted in co-immunoprecipitation of caveolin-1. Studies on adipocytes with disrupted caveolae, using either caveolin-1 deficient mice or treatment of adipocytes with methyl-beta-cyclodextrin, reduced the membrane associated PDE3B activity. Furthermore, inhibition of PDE3 in primary rat adipocytes resulted in reduced insulin stimulated glucose transporter-4 translocation to caveolae, isolated by immunoprecipitation using caveolin-1 antibodies. Thus, PDE3B, a key enzyme in insulin signalling, appears to be associated with caveolae in adipocytes and this localization seems to be functionally important.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Adipocitos/enzimología , Caveolas/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Animales , Caveolina 1/metabolismo , Colesterol/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Detergentes/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
Proteomics ; 6(3): 757-66, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16372258

RESUMEN

Protein phosphorylation is one of the most important and common ways of regulating protein function in cells. However, phosphopeptides are difficult to analyse, ionising poorly under standard MALDI conditions. Several methods have been developed to deal with the low sensitivity and specificity of phosphopeptide analysis. Here, we show an approach using a simple one-step beta-elimination/Michael addition reaction for the derivatization of phosphoserine and phosphothreonine. The substitution of the negatively charged phosphate group by a positively charged S-ethylpyridyl group greatly improves the ionisation of the modified peptides, especially in MALDI MS, increasing the sensitivity of the analysis. The modification allows the formation of a unique fragment ion at m/z 106 under mild collisional activation conditions, which can be used for parent (precursor) ion scanning in order to improve both the sensitivity and the selectivity of the analysis. The optimisation of the approach is described for a standard model peptide and protein and then applied to phosphorylation analysis in two biologically derived proteins purified from different experimental systems.


Asunto(s)
Fosfopéptidos/química , Fosfoserina/análisis , Fosfotreonina/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Caseínas/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Inmunoprecipitación , Masculino , Mapeo Peptídico , Fosforilación , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad
3.
J Nutr Biochem ; 15(5): 303-12, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15135155

RESUMEN

Dimethylaminopurine (DMAP) has previously been used as an inhibitor of phosphorylation in studies of meiotic events, and more recently to investigate TNFalpha signaling, because of its potential to inhibit activation of c-jun N-terminal kinase (JNK). Here we have addressed the effects of DMAP on metabolic insulin responses in adipocytes and on intracellular insulin signaling molecules. At 100 micromol/L, DMAP completely inhibited the ability of insulin to counteract lipolysis in isolated adipocytes. Insulin-induced lipogenesis and glucose uptake was inhibited to a lesser degree in a concentration-dependent manner starting at 10 micromol/L DMAP. Insulin-induced tyrosine phosphorylation of the insulin receptor was not affected by DMAP. Insulin-induced activation of protein kinase B, a known mediator of insulin action, was not inhibited by 100 micromol/L, but to a low extent by 1 mmol/L DMAP in intact cells. This inhibition was not sufficient to affect activation of the downstream protein kinase B substrate phosphodiesterase 3B. The inhibition of activation of JNK as a possible mechanism whereby DMAP affects insulin-induced antilipolysis, lipogenesis, and glucose uptake, was investigated using the JNK inhibitor SP600125. At 100 micromol/L, SP600125 completely reversed the antilipolytic effect of insulin, as well as partially inhibited insulin-induced lipogenesis and glucose-uptake, indicating that JNK may be involved in mediating these actions of insulin. Inhibition of JNK by DMAP may therefore partly explain the negative impact of DMAP on insulin action in adipocytes.


Asunto(s)
Adenina/análogos & derivados , Adenina/farmacología , Adipocitos/efectos de los fármacos , Insulina/farmacología , Adipocitos/metabolismo , Animales , Antracenos/farmacología , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lípidos/biosíntesis , Lipólisis/efectos de los fármacos , MAP Quinasa Quinasa 4 , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA