Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Metab ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38959897

RESUMEN

A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.

3.
Blood Adv ; 7(21): 6506-6519, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37567157

RESUMEN

Hematopoiesis produces diverse blood cell lineages to meet the basal needs and sudden demands of injury or infection. A rapid response to such challenges requires the expansion of specific lineages and a prompt return to balanced steady-state levels, necessitating tightly coordinated regulation. Previously we identified a requirement for the zinc finger and broad complex, tramtrak, bric-a-brac domain-containing 11 (ZBTB11) transcription factor in definitive hematopoiesis using a forward genetic screen for zebrafish myeloid mutants. To understand its relevance to mammalian systems, we extended these studies to mice. When Zbtb11 was deleted in the hematopoietic compartment, embryos died at embryonic day (E) 18.5 with hematopoietic failure. Zbtb11 hematopoietic knockout (Zbtb11hKO) hematopoietic stem cells (HSCs) were overabundantly specified from E14.5 to E17.5 compared with those in controls. Overspecification was accompanied by loss of stemness, inability to differentiate into committed progenitors and mature lineages in the fetal liver, failure to seed fetal bone marrow, and total hematopoietic failure. The Zbtb11hKO HSCs did not proliferate in vitro and were constrained in cell cycle progression, demonstrating the cell-intrinsic role of Zbtb11 in proliferation and cell cycle regulation in mammalian HSCs. Single-cell RNA sequencing analysis identified that Zbtb11-deficient HSCs were underrepresented in an erythroid-primed subpopulation and showed downregulation of oxidative phosphorylation pathways and dysregulation of genes associated with the hematopoietic niche. We identified a cell-intrinsic requirement for Zbtb11-mediated gene regulatory networks in sustaining a pool of maturation-capable HSCs and progenitor cells.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Ratones , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Mamíferos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
4.
Biomater Res ; 27(1): 32, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076899

RESUMEN

BACKGROUND: There is great interest to engineer in vitro models that allow the study of complex biological processes of the microvasculature with high spatiotemporal resolution. Microfluidic systems are currently used to engineer microvasculature in vitro, which consists of perfusable microvascular networks (MVNs). These are formed through spontaneous vasculogenesis and exhibit the closest resemblance to physiological microvasculature. Unfortunately, under standard culture conditions and in the absence of co-culture with auxiliary cells as well as protease inhibitors, pure MVNs suffer from a short-lived stability. METHODS: Herein, we introduce a strategy for stabilization of MVNs through macromolecular crowding (MMC) based on a previously established mixture of Ficoll macromolecules. The biophysical principle of MMC is based on macromolecules occupying space, thus increasing the effective concentration of other components and thereby accelerating various biological processes, such as extracellular matrix deposition. We thus hypothesized that MMC will promote the accumulation of vascular ECM (basement membrane) components and lead to a stabilization of MVN with improved functionality. RESULTS: MMC promoted the enrichment of cellular junctions and basement membrane components, while reducing cellular contractility. The resulting advantageous balance of adhesive forces over cellular tension resulted in a significant stabilization of MVNs over time, as well as improved vascular barrier function, closely resembling that of in vivo microvasculature. CONCLUSION: Application of MMC to MVNs in microfluidic devices provides a reliable, flexible and versatile approach to stabilize engineered microvessels under simulated physiological conditions.

5.
Nat Commun ; 14(1): 2099, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055407

RESUMEN

Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.


Asunto(s)
Megacariocitos , Trombocitopenia , Humanos , Animales , Megacariocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Plaquetas , Trombopoyesis/genética , Hematopoyesis/genética , Trombocitopenia/metabolismo , Modelos Animales de Enfermedad , Ploidias , Factores de Empalme Serina-Arginina/metabolismo
6.
NPJ Regen Med ; 7(1): 31, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710627

RESUMEN

The impact of aging on intestinal stem cells (ISCs) has not been fully elucidated. In this study, we identified widespread epigenetic and transcriptional alterations in old ISCs. Using a reprogramming algorithm, we identified a set of key transcription factors (Egr1, Irf1, FosB) that drives molecular and functional differences between old and young states. Overall, by dissecting the molecular signature of aged ISCs, our study identified transcription factors that enhance the regenerative capacity of ISCs.

7.
Blood ; 139(9): 1359-1373, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34852174

RESUMEN

RNA processing is increasingly recognized as a critical control point in the regulation of different hematopoietic lineages including megakaryocytes responsible for the production of platelets. Platelets are anucleate cytoplasts that contain a rich repertoire of RNAs encoding proteins with essential platelet functions derived from the parent megakaryocyte. It is largely unknown how RNA binding proteins contribute to the development and functions of megakaryocytes and platelets. We show that serine-arginine-rich splicing factor 3 (SRSF3) is essential for megakaryocyte maturation and generation of functional platelets. Megakaryocyte-specific deletion of Srsf3 in mice led to macrothrombocytopenia characterized by megakaryocyte maturation arrest, dramatically reduced platelet counts, and abnormally large functionally compromised platelets. SRSF3 deficient megakaryocytes failed to reprogram their transcriptome during maturation and to load platelets with RNAs required for normal platelet function. SRSF3 depletion led to nuclear accumulation of megakaryocyte mRNAs, demonstrating that SRSF3 deploys similar RNA regulatory mechanisms in megakaryocytes as in other cell types. Our study further suggests that SRSF3 plays a role in sorting cytoplasmic megakaryocyte RNAs into platelets and demonstrates how SRSF3-mediated RNA processing forms a central part of megakaryocyte gene regulation. Understanding SRSF3 functions in megakaryocytes and platelets provides key insights into normal thrombopoiesis and platelet pathologies as SRSF3 RNA targets in megakaryocytes are associated with platelet diseases.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , ARN Mensajero , Factores de Empalme Serina-Arginina , Trombocitopenia , Trombopoyesis/genética , Animales , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo
8.
J Mol Cell Cardiol ; 163: 20-32, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34624332

RESUMEN

Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.


Asunto(s)
Corazón , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Mamíferos , Ratones
9.
Nat Commun ; 12(1): 6906, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824275

RESUMEN

Astrocytes play critical roles after brain injury, but their precise function is poorly defined. Utilizing single-nuclei transcriptomics to characterize astrocytes after ischemic stroke in the visual cortex of the marmoset monkey, we observed nearly complete segregation between stroke and control astrocyte clusters. Screening for the top 30 differentially expressed genes that might limit stroke recovery, we discovered that a majority of astrocytes expressed RTN4A/ NogoA, a neurite-outgrowth inhibitory protein previously only associated with oligodendrocytes. NogoA upregulation on reactive astrocytes post-stroke was significant in both the marmoset and human brain, whereas only a marginal change was observed in mice. We determined that NogoA mediated an anti-inflammatory response which likely contributes to limiting the infiltration of peripheral macrophages into the surviving parenchyma.


Asunto(s)
Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Macrófagos/metabolismo , Proteínas Nogo/metabolismo , Animales , Callithrix , Femenino , Proteína GAP-43 , Glicoproteínas de Membrana , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas Nogo/genética , Oligodendroglía , Receptores Inmunológicos , Núcleo Solitario , Accidente Cerebrovascular , Transcriptoma , Regulación hacia Arriba , Corteza Visual
10.
Front Cell Dev Biol ; 9: 737880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631716

RESUMEN

Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.

11.
Nat Commun ; 12(1): 2665, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976125

RESUMEN

With age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size. Metabolic restoration is dependent on continuous NR supplementation and accompanied by a shift of the aged transcriptome towards the young HSC state, more youthful bone marrow cellular composition and an improved regenerative capacity in a transplant setting. Consequently, NR administration could support healthy ageing by re-establishing a more youthful hematopoietic system.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas/efectos de los fármacos , NAD/metabolismo , Niacinamida/análogos & derivados , Compuestos de Piridinio/farmacología , Factores de Edad , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Niacinamida/farmacología , Fosforilación Oxidativa/efectos de los fármacos
12.
Nature ; 586(7827): 101-107, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939092

RESUMEN

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Asunto(s)
Reprogramación Celular/genética , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Transcripción Genética
13.
Stem Cell Reports ; 14(6): 1018-1032, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442534

RESUMEN

Multiple protocols have been published for generation of iMGLs from hESCs/iPSCs. To date, there are no guides to assist researchers to determine the most appropriate methodology for microglial studies. To establish a framework to facilitate future microglial studies, we first performed a comparative transcriptional analysis between iMGLs derived using three published datasets, which allowed us to establish the baseline protocol that is most representative of bona fide human microglia. Secondly, using CRISPR to tag the classic microglial marker CX3CR1 with nanoluciferase and tdTomato, we generated and functionally validated a reporter ESC line. Finally, using this cell line, we demonstrated that co-culture of iMGL precursors with human glia and neurons enhanced transcriptional resemblance of iMGLs to ex vivo microglia. Together, our comprehensive molecular analysis and reporter cell line are a useful resource for neurobiologists seeking to use iMGLs for disease modeling and drug screening studies.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Diferenciación Celular , Genes Reporteros , Células Madre Embrionarias Humanas/citología , Microglía/citología , Neuronas/citología , Receptor 1 de Quimiocinas CX3C/genética , Línea Celular , Técnicas de Cocultivo/métodos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Microglía/metabolismo , Neuronas/metabolismo , Transcriptoma
14.
EMBO Rep ; 21(2): e48781, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31916354

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-ß1/Smad3 signalling plays a major pathological role in DN; however, the contribution of Smad4 has not been examined. Smad4 depletion in the kidney using anti-Smad4 locked nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, suggesting a pathogenic role of Smad4 in podocytes. Smad4 is upregulated in human and mouse podocytes during DN. Conditional Smad4 deletion in podocytes protects mice from type 2 DN, independent of obesity. Mechanistically, hyperglycaemia induces Smad4 localization to mitochondria in podocytes, resulting in reduced glycolysis and oxidative phosphorylation and increased production of reactive oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme PKM2 and reducing the active tetrameric form of PKM2. In addition, Smad4 interacts with ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have discovered a mitochondrial mechanism by which Smad4 causes diabetic podocyte injury.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Glucólisis/genética , Riñón , Ratones , Podocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
ACS Appl Bio Mater ; 3(9): 5775-5786, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021808

RESUMEN

The functional group tolerance and simplicity of reversible addition fragmentation chain transfer (RAFT) polymerization enable its use in the preparation of a wide range of functional polymer architectures for a variety of applications, including drug delivery. Given the role of tumor-associated macrophages (TAMs) in cancer and their dependence on the tyrosine kinase receptor FMS (CSF-1R), the key aim of this work was to achieve effective delivery of an FMS inhibitor to cells using a polymer delivery system. Such a system has the potential to exploit biological features specific to macrophages and therefore provide enhanced selectivity. Building on our prior work, we have prepared RAFT polymers based on a poly(butyl methacrylate-co-methacrylic acid) diblock, which were extended with a hydrophilic block, a cross-linker, and a mannose-based monomer scaffold, exploiting the abundance of macrophage mannose receptors (MMRs, CD206) on the surface of macrophages. We demonstrate that the prepared polymers can be assembled into nanoparticles and are successfully internalized into macrophages, in part, via the MMR (CD206). Finally, we showcase the developed nanoparticles in the delivery of an FMS inhibitor to cells, resulting in inhibition of the FMS receptor. As such, this study lays the groundwork for further drug-delivery studies aimed at specifically targeting TAMs with molecularly targeted therapeutics.

16.
Front Pharmacol ; 10: 880, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447676

RESUMEN

Acute kidney injury leading to chronic kidney disease through tubulointerstitial fibrosis is a major challenge in nephropathy. Several signaling pathways promote interstitial fibrosis; however, effective suppression of fibrosis may require blockade of more than one pathway. This study investigated whether blockade of Smad3 and c-Jun N-terminal kinase (JNK) signaling gives added suppression of interstitial fibrosis in folic acid nephropathy. A single high dose of folic acid (FA) causes acute tubular damage in C57BL/6J mice followed by interstitial fibrosis and chronic renal impairment. Co-activations of Smad3 and JNK signaling occur in both tubular epithelial cells and myofibroblasts in areas of tubulointerstitial damage and fibrosis in both murine FA-induced nephropathy and human IgA nephropathy. Groups of mice were treated with a Smad3 inhibitor (SIS3), a JNK inhibitor (SP600125), or a combination from day 6 after FA administration until being killed on day 28. Each drug efficiently inhibited its specific target (Smad3 phosphorylation or c-Jun phosphorylation) without affecting the other pathway. Given alone, each drug partially reduced renal fibrosis, whereas the combination therapy gave an additive and profound protection from renal fibrosis and improved renal function. Inhibition of Smad3 and/or JNK signaling activities prevented down-regulation of PGC-1α in tubular epithelial cells and up-regulation of PGC-1α in myofibroblasts during FA-induced renal fibrosis and inflammation. The expression of PGC-1α was upregulated in Smad3 -/- NRK52E cells while downregulated in Smad3 -/- NRK49F cells, suggesting that Smad3 signaling may regulate expression of PGC-1α in renal tubular epithelial cells and fibroblasts in distinct fashion. In vivo and cell culture studies also indicate that Smad3 and JNK signaling cooperate to cause mitochondrial dysfunction and cell damage in tubular epithelial cells via direct actions on the transcription of PGC-1α. These pathways also act cooperatively to promote renal fibroblast proliferation in tempo-spatial fashion. In conclusion, we have identified a potential combination therapy for progressive renal fibrosis which operates, in part, through modifying mitochondrial function.

17.
Cells ; 8(9)2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461896

RESUMEN

Osteopontin (OPN) is an important component in both bone and blood regulation, functioning as a bridge between the two. Previously, thrombin-cleaved osteopontin (trOPN), the dominant form of OPN in adult bone marrow (BM), was demonstrated to be a critical negative regulator of adult hematopoietic stem cells (HSC) via interactions with α4ß1 and α9ß1 integrins. We now demonstrate OPN is also required for fetal hematopoiesis in maintaining the HSC and progenitor pool in fetal BM. Specifically, we showed that trOPN is highly expressed in fetal BM and its receptors, α4ß1 and α9ß1 integrins, are both highly expressed and endogenously activated on fetal BM HSC and progenitors. Notably, the endogenous activation of integrins expressed by HSC was attributed to high concentrations of three divalent metal cations, Ca2+, Mg2+ and Mn2+, which were highly prevalent in developing fetal BM. In contrast, minimal levels of OPN were detected in fetal liver, and α4ß1 and α9ß1 integrins expressed by fetal liver HSC were not in the activated state, thereby permitting the massive expansion of HSC and progenitors required during early fetal hematopoiesis. Consistent with these results, no differences in the number or composition of hematopoietic cells in the liver of fetal OPN-/- mice were detected, but significant increases in the hematopoietic progenitor pool in fetal BM as well as an increase in the BM HSC pool following birth and into adulthood were observed. Together, the data demonstrates OPN is a necessary negative regulator of fetal and neonatal BM progenitors and HSC, and it exhibits preserved regulatory roles during early development, adulthood and ageing.


Asunto(s)
Médula Ósea/metabolismo , Feto/citología , Feto/metabolismo , Células Madre Hematopoyéticas/metabolismo , Osteopontina/metabolismo , Nicho de Células Madre , Animales , Ratones , Ratones Endogámicos C57BL , Osteopontina/deficiencia
18.
Methods Mol Biol ; 1940: 129-142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788822

RESUMEN

The tracking of the hematopoietic potential of genetically manipulated fluorescent hematopoietic stem cells (HSC) in the bone marrow (BM) allows the assessment of regulatory processes involved in the re-establishment of hematopoiesis posttransplant. Herein, we describe the means to assess the consequence of expressing specific genes in HSC on their engraftment potential posttransplant.


Asunto(s)
Células de la Médula Ósea/citología , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Nicho de Células Madre/fisiología , Animales , Médula Ósea/fisiología , Movimiento Celular/fisiología , Expresión Génica , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Coloración y Etiquetado/métodos , Transducción Genética
20.
Nat Commun ; 9(1): 747, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467472

RESUMEN

Although effector CD4+ T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4+ T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4+ T cells. Following intravascular deposition of antigen in glomeruli, effector CD4+ T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII+ immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4+ T-cell-dependent glomerular inflammation. These findings indicate that MHCII+ monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4+ T cells within glomerular capillaries, leading to antigen-dependent inflammation.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/inmunología , Monocitos/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/fisiología , Capilares/inmunología , Adhesión Celular , Movimiento Celular , Glomerulonefritis/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...