Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37015545

RESUMEN

There is growing evidence on the efficacy of electrical stimulation delivered via spinal neural interfaces to improve functional recovery following spinal cord injury. For such interfaces, carbon-based neural arrays are fast becoming recognized as a compelling material and platform due to biocompatibility and long-term electrochemical stability. Here, we introduce the design, fabrication, and in vivo characterization of a novel cervical epidural implant with carbon-based surface electrodes. Through finite element analysis and mechanical load tests, we demonstrated that the array could safely withstand loads applied to it during implantation and natural movement of the subject with minimal stress levels. Furthermore, the long-term in vivo performance of this neural array consisting of glassy carbon surface electrodes was investigated through acute and chronic spinal motor evoked potential recordings and electrode impedance tests in rats. We demonstrated stable stimulation performance for at least four weeks in a rat model of spinal cord injury. Lastly, we found that impedance measurements on all carbon-based spinal arrays were generally stable over time up to four weeks after implantation, with a slight increase in impedance in subsequent weeks when tested in spinally injured rats. Taken together, this study demonstrated the potential for carbon-based electrodes as a spinal neural interface to accelerate both mechanistic research and functional restoration in animal models of spinal cord injury.

2.
J Neural Eng ; 18(5)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34492644

RESUMEN

Objective.There is a growing interest in the use of carbon and its allotropes for microelectrodes in neural probes because of their inertness, long-term electrical and electrochemical stability, and versatility. Building on this interest, we introduce a new electrode material system consisting of an ultra-thin monoatomic layer of graphene (Gr) mechanically supported by a relatively thicker layer of glassy carbon (GC).Approach.Due to its high electrical conductivity and high double-layer capacitance, Gr has impressive electrical and electrochemical properties, two key properties that are useful for neural recording and stimulation applications. However, because of its two-dimensional nature, Gr exhibits a lack of stiffness in the transverse direction and hence almost non-existent flexural and out-of-plane rigidity that will severely limit its wider use. On the other hand, GC is one of carbon's important allotropes and consists of three-dimensional microstructures of Gr fragments with a natural molecular similarity to Gr. Further, GC has exceptional chemical inertness, good electrical properties, high electrochemical stability, purely capacitive charge injection, and fast surface electrokinetics coupled with lithography patternability. This makes GC an ideal candidate for addressing Gr's lack of out-of-plane rigidity through providing a matching sturdier and robust mechanical backing. Combining the strengths of these two allotropes of carbon, we introduce a new neural probe that consists of ∼1 nm thick layer of patterned Gr microelectrodes supported by another layer of 3-5µm thick patterned GC.Main results. We present the fabrication technology for the newGr on GC(graphene on glassy carbon) microelectrodes and the accompanying pattern transfer technology on flexible substrate and report on the bond between these two allotropes of carbon through FTIR, surface morphology through SEM, topography through atomic force microscopy, and microstructure imaging through scanning transmission electron microscopy. A long-term (18 weeks)in vivostudy of the use of theseGr on GCmicroelectrodes assessed the quality of the electrocorticography-based neural signal recording and stimulation through electrophysiological measurements. The probes were demonstrated to be functionally and structurally stable over the 18 week period with minimal glial response-the longest reported so far for Gr-based microelectrodes.Significance.TheGr on GCmicroelectrodes presented here offers a compelling case for expanding the potentials of Gr-based technology in the broad areas of neural probes.


Asunto(s)
Carbono , Grafito , Conductividad Eléctrica , Electricidad , Microelectrodos
3.
J Neural Eng ; 18(4)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34404037

RESUMEN

Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.


Asunto(s)
Carbono , Electricidad , Conductividad Eléctrica , Electrodos , Metales
4.
Analyst ; 146(12): 3955-3970, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988202

RESUMEN

Progress in real-time, simultaneous in vivo detection of multiple neurotransmitters will help accelerate advances in neuroscience research. The need for development of probes capable of stable electrochemical detection of rapid neurotransmitter fluctuations with high sensitivity and selectivity and sub-second temporal resolution has, therefore, become compelling. Additionally, a higher spatial resolution multi-channel capability is required to capture the complex neurotransmission dynamics across different brain regions. These research needs have inspired the introduction of glassy carbon (GC) microelectrode arrays on flexible polymer substrates through carbon MEMS (C-MEMS) microfabrication process followed by a novel pattern transfer technique. These implantable GC microelectrodes provide unique advantages in electrochemical detection of electroactive neurotransmitters through the presence of active carboxyl, carbonyl, and hydroxyl functional groups. In addition, they offer fast electron transfer kinetics, capacitive electrochemical behavior, and wide electrochemical window. Here, we combine the use of these GC microelectrodes with the fast scan cyclic voltammetry (FSCV) technique to optimize the co-detection of dopamine (DA) and serotonin (5-HT) in vitro and in vivo. We demonstrate that using optimized FSCV triangular waveform at scan rates ≤700 V s-1 and holding and switching at potentials of 0.4 and 1 V respectively, it is possible to discriminate voltage reduction and oxidation peaks of DA and 5-HT, with 5-HT contributing distinct multiple oxidation peaks. Taken together, our results present a compelling case for a carbon-based MEA platform rich with active functional groups that allows for repeatable and stable detection of electroactive multiple neurotransmitters at concentrations as low as 1.1 nM.


Asunto(s)
Dopamina , Serotonina , Carbono , Técnicas Electroquímicas , Microelectrodos , Neurotransmisores
5.
J Neural Eng ; 17(4): 046005, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32521531

RESUMEN

OBJECTIVE: In this study, we demonstrate practical applications of a novel 3-dimensional neural probe for simultaneous electrophysiological recordings from the surface of the brain as well as deep intra-cortical tissue. We used this 3D probe to investigate signal propagation mechanisms between neuronal cells and their responses to stimuli in a 3D fashion. APPROACH: This novel probe leverage 2D thin-film microfabrication technique to combine an epi-cortical (surface) and an intra-cortical (depth) microelectrode arrays (Epi-Intra), that unfold into an origami 3D-like probe during brain implantation. The flexible epi-cortical component conforms to the brain surface while the intra-cortical array is reinforced with stiffer durimide polymer layer for ease of tissue penetration. The microelectrodes are made of glassy carbon material that is biocompatible and has low electrochemical impedance that is important for high fidelity neuronal recordings. These recordings were performed on the auditory region of anesthetized European starling songbirds during playback of conspecific songs as auditory stimuli. MAIN RESULTS: The Epi-Intra probe recorded broadband activity including local field potentials (LFPs) signals as well as single-unit activity and multi-unit activity from both surface and deep brain. The majority of recorded cellular activities were stimulus-locked and exhibited low noise. Notably, while LFPs recorded on surface and depth electrodes did not exhibit strong correlation, composite receptive fields (CRFs)-extracted from individual neuron cells through a non-linear model and that are cell-dependent-were correlated. SIGNIFICANCE: These findings demonstrate that CRFs extracted from Epi-Intra recordings are excellent candidates for neural coding and for understanding the relationship between sensory neuronal responses and their stimuli (stimulus encoding). Beyond CRFs, this novel neural probe may enable new spatiotemporal 3D volumetric mapping to address, with cellular resolution, how the brain coordinates function.


Asunto(s)
Carbono , Neuronas , Electrodos Implantados , Microelectrodos , Polímeros
6.
Microsyst Nanoeng ; 5: 61, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754453

RESUMEN

The recent introduction of glassy carbon (GC) microstructures supported on flexible polymeric substrates has motivated the adoption of GC in a variety of implantable and wearable devices. Neural probes such as electrocorticography and penetrating shanks with GC microelectrode arrays used for neural signal recording and electrical stimulation are among the first beneficiaries of this technology. With the expected proliferation of these neural probes and potential clinical adoption, the magnetic resonance imaging (MRI) compatibility of GC microstructures needs to be established to help validate this potential in clinical settings. Here, we present GC microelectrodes and microstructures-fabricated through the carbon micro-electro-mechanical systems process and supported on flexible polymeric substrates-and carry out experimental measurements of induced vibrations, eddy currents, and artifacts. Through induced vibration, induced voltage, and MRI experiments and finite element modeling, we compared the performances of these GC microelectrodes against those of conventional thin-film platinum (Pt) microelectrodes and established that GC microelectrodes demonstrate superior magnetic resonance compatibility over standard metal thin-film microelectrodes. Specifically, we demonstrated that GC microelectrodes experienced no considerable vibration deflection amplitudes and minimal induced currents, while Pt microelectrodes had significantly larger currents. We also showed that because of their low magnetic susceptibility and lower conductivity, the GC microelectrodes caused almost no susceptibility shift artifacts and no eddy-current-induced artifacts compared to Pt microelectrodes. Taken together, the experimental, theoretical, and finite element modeling establish that GC microelectrodes exhibit significant MRI compatibility, hence demonstrating clear clinical advantages over current conventional thin-film materials, further opening avenues for wider adoption of GC microelectrodes in chronic clinical applications.

7.
MRS Adv ; 3(29): 1629-1634, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29881642

RESUMEN

In this study, we present a 4-channel intracortical glassy carbon (GC) microelectrode array on a flexible substrate for the simultaneous in vivo neural activity recording and dopamine (DA) concentration measurement at four different brain locations (220µm vertical spacing). The ability of GC microelectrodes to detect DA was firstly assessed in vitro in phosphate-buffered saline solution and then validated in vivo measuring spontaneous DA concentration in the Striatum of European Starling songbird through fast scan cyclic voltammetry (FSCV). The capability of GC microelectrode arrays and commercial penetrating metal microelectrode arrays to record neural activity from the Caudomedial Neostriatum of European starling songbird was compared. Preliminary results demonstrated the ability of GC microelectrodes in detecting neurotransmitters release and recording neural activity in vivo. GC microelectrodes array may, therefore, offer a new opportunity to understand the intimate relations linking electrophysiological parameters with neurotransmitters release.

8.
Sci Rep ; 8(1): 6958, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725133

RESUMEN

We present a new class of carbon-based neural probes that consist of homogeneous glassy carbon (GC) microelectrodes, interconnects and bump pads. These electrodes have purely capacitive behavior with exceptionally high charge storage capacity (CSC) and are capable of sustaining more than 3.5 billion cycles of bi-phasic pulses at charge density of 0.25 mC/cm2. These probes enable both high SNR (>16) electrical signal recording and remarkably high-resolution real-time neurotransmitter detection, on the same platform. Leveraging a new 2-step, double-sided pattern transfer method for GC structures, these probes allow extended long-term electrical stimulation with no electrode material corrosion. Cross-section characterization through FIB and SEM imaging demonstrate strong attachment enabled by hydroxyl and carbonyl covalent bonds between GC microstructures and top insulating and bottom substrate layers. Extensive in-vivo and in-vitro tests confirmed: (i) high SNR (>16) recordings, (ii) highest reported CSC for non-coated neural probe (61.4 ± 6.9 mC/cm2), (iii) high-resolution dopamine detection (10 nM level - one of the lowest reported so far), (iv) recording of both electrical and electrochemical signals, and (v) no failure after 3.5 billion cycles of pulses. Therefore, these probes offer a compelling multi-modal platform for long-term applications of neural probe technology in both experimental and clinical neuroscience.


Asunto(s)
Encéfalo/fisiología , Carbono/química , Dopamina/análisis , Estimulación Eléctrica/instrumentación , Neurotransmisores/análisis , Animales , Encéfalo/citología , Química Encefálica , Dopamina/metabolismo , Electrodos Implantados , Diseño de Equipo , Femenino , Microelectrodos , Neurotransmisores/metabolismo , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA