Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 228: 109463, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36792030

RESUMEN

Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.


Asunto(s)
Alcoholismo , Complejo Nuclear Basolateral , Masculino , Femenino , Ratones , Animales , Etanol , Corteza Prefrontal , Neuronas
2.
Alcohol Clin Exp Res ; 46(9): 1665-1676, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35915568

RESUMEN

BACKGROUND: The basolateral nucleus of the amygdala (BLA) plays an important role in the development of fear and anxiety-related behaviors. The BLA receives inputs from all sensory stimuli. After processing those stimuli, BLA neurons signal neurons within the central amygdala and other brain regions, including the ventral and dorsal striatum and frontal cortex. Studies suggest that the BLA is involved in drug dependence and in the reinforcing actions of ethanol. For example, acute exposure to ethanol reduces anxiety, while withdrawal from chronic ethanol exposure alters BLA synaptic transmission, which increases anxiety, a common underlying cause of relapse. Exposure to and withdrawal from chronic alcohol also disrupts many brain areas that connect with the BLA. Despite these important findings, the acute actions of alcohol on the intrinsic excitability of BLA neurons have not been fully characterized. METHODS: Brain slices containing the BLA were prepared from adult C57BL/6J male mice. Whole-cell and sharp electrode electrophysiological recordings were performed to characterize the effects of acute ethanol on BLA neuronal and astrocyte function, respectively. RESULTS: Ethanol inhibited action potential (AP) firing of BLA neurons but had no effect on BLA astrocyte resting membrane potential. The ethanol-induced inhibition of firing was concentration-dependent (11 to 66 mM) and accompanied by a reduction in the input resistance and an increase in the rheobase of BLA neurons. The inhibitory effect of ethanol was suppressed by picrotoxin, which blocks both γ-aminobutyric acid type A (GABAA ) and glycine receptors, but not by the selective glycine receptor antagonist strychnine, which suggests an involvement of GABAA receptors. Ethanol did not affect spontaneous inhibitory postsynaptic currents suggesting that the inhibition of BLA neuronal excitability by ethanol was not due to an increase in GABAA -mediated synaptic transmission. However, acute ethanol enhanced the amplitude of the holding current of BLA neurons, an effect that was prevented by picrotoxin, which by itself reduced the holding current. CONCLUSIONS: These results suggest that BLA neurons express a GABA-mediated tonic current that is enhanced by acute ethanol, which leads to reduced excitability of BLA neurons.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Amigdalino Central , Animales , Etanol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas , Picrotoxina/farmacología , Receptores de GABA-A/fisiología , Receptores de Glicina , Estricnina/farmacología , Transmisión Sináptica , Ácido gamma-Aminobutírico/farmacología
3.
Neuropharmacology ; 192: 108600, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33965399

RESUMEN

Recent findings from this laboratory demonstrate that ethanol reduces the intrinsic excitability of orbitofrontal cortex (OFC) neurons via activation of strychnine-sensitive glycine receptors. Although the mechanism linking ethanol to the release of glycine is currently unknown, astrocytes are a source of neurotransmitters including glycine and activation of dopamine D1-like receptors has been reported to enhance extracellular levels of glycine via a functional reversal of the astrocytic glycine transporter GlyT1. We recently reported that like ethanol, dopamine or a D1/D5 receptor agonist increases a tonic current in lateral OFC (lOFC) neurons. Therefore, in this study, we used whole-cell patch-clamp electrophysiology to examine whether ethanol inhibition of OFC spiking involves the release of glycine from astrocytes and whether this release is dopamine receptor dependent. Ethanol, applied acutely, decreased spiking of lOFC neurons and this effect was blocked by antagonists of GlyT1, the norepinephrine transporter or D1-like but not D2-like receptors. Ethanol enhanced the tonic current of OFC neurons and occluded the effect of dopamine suggesting that ethanol and dopamine may share a common pathway. Altering astrocyte function by suppressing intracellular astrocytic calcium signaling or blocking the astrocyte-specific Kir4.1 potassium channels reduced but did not completely abolish ethanol inhibition of OFC neuron firing. However, when both astrocytic calcium signaling and Kir4.1 channels were inhibited, ethanol had no effect on firing. Ethanol inhibition was also prevented by inhibitors of phospholipase C and conventional isoforms of protein kinase C (cPKC) previously shown to block D1R-induced GlyT1 reversal and PKC inhibition of Kir4.1 channels. Finally, the membrane potential of OFC astrocytes was depolarized by bath application of a Kir4.1 blocker, a D1 agonist or ethanol and ethanol effect was blocked by a D1 antagonist. Together, these findings suggest that acute ethanol inhibits OFC neuron excitability via a D1 receptor-mediated dysregulation of astrocytic glycine transport.


Asunto(s)
Astrocitos/metabolismo , Etanol/toxicidad , Glicina/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Animales , Astrocitos/efectos de los fármacos , Dopaminérgicos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/antagonistas & inhibidores
4.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32439714

RESUMEN

Alcohol (ethanol) use disorder is associated with changes in frontal cortical areas including the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) that contribute to cognitive deficits, uncontrolled drinking, and relapse. Acute ethanol exposure reduces intrinsic excitability of lateral OFC (lOFC) neurons, while chronic exposure and long-term drinking influence plasticity of intrinsic excitability and function of glutamatergic synapses. However, the time course that these adaptations occur across a history of ethanol drinking is unknown. The current study examined whether short-term and long-term voluntary ethanol consumption using an intermittent access paradigm would alter the biophysical properties of deep-layer pyramidal neurons in the ACC and lOFC. Neuronal spiking varied in the ACC with an initial increase in evoked firing after 1 d of drinking followed by a decrease in firing in mice that consumed ethanol for one week. No difference in lOFC spike number was observed between water controls and 1-d ethanol drinking mice, but mice that consumed ethanol for one week or more showed a significant increase in evoked firing. Voluntary ethanol drinking for 4 weeks also produced a total loss of ethanol inhibition of lOFC neurons. There was no effect of drinking on excitatory or inhibitory synaptic events in ACC or lOFC neurons across all time points in this model. Overall, these results demonstrate that voluntary drinking alters neuronal excitability in the ACC and lOFC in distinct ways and on a different time scale that may contribute to the impairment of prefrontal cortex-dependent behaviors observed in individuals with alcohol use disorder (AUD).


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo , Potenciales de Acción , Animales , Etanol , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA