Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020171

RESUMEN

Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These 'hot Jupiter' planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6-8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity of e = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.

2.
Science ; 382(6674): 1031-1035, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033084

RESUMEN

Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet's orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10-4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

3.
Sci Adv ; 9(23): eadf8736, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285438

RESUMEN

Capturing planets in the act of losing their atmospheres provides rare opportunities to probe their evolution history. This analysis has been enabled by observations of the helium triplet at 10,833 angstrom, but past studies have focused on the narrow time window right around the planet's optical transit. We monitored the hot Jupiter HAT-P-32 b using high-resolution spectroscopy from the Hobby-Eberly Telescope covering the planet's full orbit. We detected helium escaping HAT-P-32 b at a 14σ significance,with extended leading and trailing tails spanning a projected length over 53 times the planet's radius. These tails are among the largest known structures associated with an exoplanet. We interpret our observations using three-dimensional hydrodynamic simulations, which predict Roche Lobe overflow with extended tails along the planet's orbital path.

4.
Astron J ; 161(6)2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-38505866

RESUMEN

The comblike spectrum of a white light-illuminated Fabry-Pérot etalon can serve as a cost-effective and stable reference for precise Doppler measurements. Understanding the stability of these devices across their broad (hundreds of nanometers) spectral bandwidths is essential to realizing their full potential as Doppler calibrators. However, published descriptions remain limited to small bandwidths or short time spans. We present an ~6 month broadband stability monitoring campaign of the Fabry-Pérot etalon system deployed with the near-infrared Habitable Zone Planet Finder (HPF) spectrograph. We monitor the wavelengths of each of ~3500 resonant modes measured in HPF spectra of this Fabry-Pérot etalon (free spectral range = 30 GHz, bandwidth = 820-1280 nm), leveraging the accuracy and precision of an electro-optic frequency comb reference. These results reveal chromatic structure in the Fabry-Pérot mode locations and their evolution with time. We measure an average drift on the order of 2 cm s-1 day-1, with local departures up to ±5 cm s-1 day-1. We discuss these behaviors in the context of the Fabry-Pérot etalon mirror dispersion and other optical properties of the system and the implications for the use of similar systems for precise Doppler measurements. Our results show that this system supports the wavelength calibration of HPF at the ≲10 cm s-1 level over a night and the ≲30 cm s-1 level over ~10 days. Our results also highlight the need for long-term and spectrally resolved study of similar systems that will be deployed to support Doppler measurement precision approaching ~10 cm s-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...