Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Yi Chuan ; 45(5): 447-458, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37194591

RESUMEN

Neuregulin 4 (NRG4) is an important adipocytokine, which plays crucial roles in maintaining energy balance, regulating glucose and lipid metabolism, and preventing non-alcoholic fatty liver disease in mammals. At present, the genomic organization, transcript and protein isoforms of human NRG4 gene have been fully explored. Previous studies in our laboratory have shown that the NRG4 gene is expressed in chicken adipose tissue, but the chicken NRG4 (cNRG4) genomic structure, transcript and protein isoforms are still unknown. To this end, in this study, the genomic and transcriptional structure of the cNRG4 gene were systematically investigated using rapid amplification of cDNA ends (RACE) and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that the coding region (CDS) of the cNRG4 gene was small, but it had a very complex transcriptional structure characterized by multiple transcription start sites, alternative splicing, intron retention, cryptic exons, and alternative polyadenylation, thus leading to production of four 5?UTR isoforms (cNRG4 A, cNRG4 B, cNRG4 C, and cNRG4 D) and six 3?UTR isoforms (cNRG4 a, cNRG4 b, cNRG4 c, cNRG4 d, cNRG4 e, and cNRG4 f) of the cNRG4 gene. The cNRG4 gene spanned 21,969 bp of genomic DNA (Chr.10:3,490,314~3,512,282) and consisted of 11 exons and 10 introns. Compared with the cNRG4 gene mRNA sequence (NM_001030544.4), two novel exons and one cryptic exon of the cNRG4 gene were identified in this study. Bioinformatics analysis, RT-PCR, cloning and sequencing analysis showed that the cNRG4 gene could encode three protein isoforms (cNRG4-1, cNRG4-2 and cNRG4-3). This study lays a foundation for further research on the function and regulation of the cNRG4 gene.


Asunto(s)
Empalme Alternativo , Pollos , Animales , Empalme Alternativo/genética , Secuencia de Bases , Pollos/genética , ADN Complementario/genética , Genómica , Intrones/genética , Neurregulinas/genética , Isoformas de Proteínas/genética
2.
Yi Chuan ; 43(1): 4-15, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33509770

RESUMEN

During the maturation of pre-mRNAs and some lncRNAs, their 3'ends are cleaved and polyadenylated. The cleavage and polyadenylation (C/P) require the presence of a polyadenylation signal (PAS) at the RNA 3?end. Most eukaryotic genes have multiple PASs, resulting in alternative cleavage and polyadenylation (APA). APA leads to transcript isoforms with different coding potentials and/or variable 3?UTRs. The 3'UTR affects mRNA stability, translation, transportation, and cellular localization. Therefore, APA is an important mechanism of posttranscriptional gene regulation in eukaryotes. In recent years, whole genome sequencing of animals, plants and yeast has revealed that APA is pervasive in eukaryotes, and the functional consequences and regulation of APA have been studied. To date, many cis-acting regulatory elements and trans-acting factors for APA regulation have been identified. In this review, we summarize the recent advances in the functional consequences and regulation of APA and discuss the future directions, aiming to provide clues and references for future APA study.


Asunto(s)
División del ADN , Regulación de la Expresión Génica , Poliadenilación , Regiones no Traducidas 3' , Animales , Plantas , Estabilidad del ARN , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...