Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 477: 135335, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39079292

RESUMEN

Chlorinated paraffins (CPs) are chlorinated alkane mixtures widely used as flame retardants and plasticizers in multiple industrial products. Systematic research on how homolog-specific properties affect their atmospheric behaviors is limited. Herein, we investigated the levels of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in long-timescale, seasonal, and size-fractioned particles in the urban area of Dalian, a coastal city in northern China. The average SCCP and MCCP concentrations in particles with diameters ≤ 10 µm were 3.36 and 4.89 ng/m3, respectively, and a general increase in the SCCP concentration was observed from 2.59 ng/m3 in 2018 - 2019 to 7.84 ng/m3 in 2021 - 2023. CP levels and patterns showed significant seasonal variation, with a higher abundance of C11-13Cl7-9 in winter and C10-12Cl5 in summer. Elevated particle levels in winter and high temperatures in summer contributed to the seasonal variations. SCCPs and MCCPs were concentrated on particles with diameters of < 1 µm and their geometric mean diameter increased with the increasing carbon and chlorine numbers. Total Daily intake of SCCP and MCCP was calculated to be 0.15 and 0.22 ng/kg bw/day for adults. 53.1 %, 8.5 %, and 38.4 % of inhaled SCCPs, and 60.6 %, 7.6 %, and 31.8 % of inhaled MCCPs deposited into the head airway, tracheobronchial region, and alveolar region, respectively. This study reports on how homolog-specific physicochemical properties alter the temporal variations, size distributions, and inhaled fractions of CPs.

2.
Environ Res ; 258: 119436, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897433

RESUMEN

Atmospheric particulate matter (PM) affects visibility, climate, biogeochemical cycles and human health. Water-soluble organic matter (WSOM) is an important component of PM. In this study, PM samples with size-resolved measurements at aerodynamic cut-point diameters (Dp) of 0.01-18 µm were collected in the rural area of Baoding and the urban area of Dalian, Northern China. Non-targeted analysis was adopted for the characterization of the molecule constitutes of WSOM in different sized particles using Fourier transform-ion cyclotron resonance mass spectrometry. Regardless of the location, the composition of WSOM in Aitken mode particles (aerodynamic diameter <0.05 µm) was similar. The WSOM in accumulation mode particles (0.05-2 µm) in Baoding was predominantly composed of CHO compounds (84.9%), which were mainly recognized as lignins and lipids species. However, S-containing compounds (64.2%), especially protein and carbohydrates species, accounted for most of the WSOM in the accumulation mode particles in Dalian. The CHO compounds (67.6%-79.7%) contributed the most to the WSOM in coarse mode particles (>2 µm) from both sites. Potential sources analysis indicated the WSOM in Baoding were mainly derived from biomass burning and oxidation reactions, while the WSOM in Dalian arose from coal combustion, oxidation reactions, and regional transport.


Asunto(s)
Tamaño de la Partícula , Material Particulado , China , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Solubilidad , Compuestos Orgánicos/análisis , Agua/química
3.
Sci Total Environ ; 875: 162657, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878301

RESUMEN

Water-soluble organic matter (WSOM), as a group of ubiquitous components in atmospheric PM, plays a crucial role in global climate change and carbon cycle. In this study, the size-resolved molecular characterization of WSOM in the range of 0.010-18 µm PM was studied to gain insights into their formation processes. The CHO, CHNO, CHOS, CHNOS compounds were identified by the ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry in ESI source mode. A bimodal pattern of the PM mass concentrations was found in the accumulation and coarse mode. The increasing mass concentration of PM was mainly attributed to the growth of large-size PM with the occurrence of haze. Both Aiken-mode (70.5-75.6 %) and coarse-mode (81.7-87.9 %) particles were proven the main carriers of the CHO compounds, the majority of which were indicated to be the saturated fatty acids and their oxidized derivatives. The S-containing (CHOS and CHNOS) compounds in accumulation-mode (71.5-80.9 %) increased significantly in hazy days, where organosulfates (C11H20O6S, C12H22O7S) and nitrooxy-organosulfates (C9H19NO8S, C9H17NO8S) were confirmed in majority. The S-containing compounds in accumulation-mode particle with high oxygen content (6-8 oxygen atoms), unsaturation degree (DBE < 4), and reactivity could facilitate the particle agglomeration and accelerate the haze formation.

4.
J Environ Sci (China) ; 111: 51-60, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949373

RESUMEN

Water-insoluble organic compounds (WIOCs) are an important fraction of atmospheric fine particulate matters (PM2.5), which could affect the climate system and threaten human health potentially. In this study, molecular characterization of WIOCs in PM2.5 were investigated by 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with atmospheric pressure photoionization (APPI) source in positive ion mode. A total of 2573 and 1875 molecular formulas were identified in WIOCs extracted by dichloromethane, which were collected in hazy and normal days, respectively. The identified molecular formulas were further classified into four major subgroups, including CH, CHN, CHO and CHNO compounds. CHO compounds predominated in WIOCs, accounting for more than 60% in both samples. CHNO compounds (26.6%) and CH compounds (16.1%) were the second highest subgroups in WIOCs from the hazy days and normal days, respectively. The relative abundance and number of nitro-substituted aromatic compounds were significantly higher in hazy days than in normal days. The molecular composition of WIOCs was more complex in hazy days while more aromatic compounds were identified in normal days.


Asunto(s)
Material Particulado , Agua , Aerosoles/análisis , Humanos , Espectrometría de Masas , Compuestos Orgánicos
5.
Sci Total Environ ; 809: 151171, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699831

RESUMEN

Water-soluble organic matter (WSOM) is a complex mixture of organic compounds affecting global climate change and carbon cycle. Herein, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used for identification of WSOM molecular compositions in annual atmospheric particulate matter with diameters ≤10 µm (PM10). Totally 6538 unambiguous monoisotopic molecular formulas were assigned to WSOM with m/z values concentrating in 150-600 Da. The CHO compounds with high unsaturation degrees contributed most (51.7-52.1%) to WSOM in spring and summer. However, the S-containing compounds (CHOS and CHNOS) with higher O/C and H/C ratios accounted for 56.8-63.2% of WSOM in autumn and winter. Temperature (r = 0.82) and O3 (r = 0.89) showed higher correlation with CHO compounds, which were mainly aliphatics and highly unsaturated structures with high oxygen compounds (80.7-90.8%). The concentrations of SO42- (r = 0.33) and NO3- (r = 0.46) in PM10 both showed a positive correlation with the abundances of the S-containing compounds due to their direct participation in atmospheric reactions. Among them, 96-100% and 78-96% of the CHOS and CHNOS compounds were confirmed to be organosulfates (OSs) and nitrooxy-organosulfates (NOSs) by MS/MS analysis, respectively. These findings illustrate the strong association of atmospheric conditions with molecular chemodiversity of WSOM.


Asunto(s)
Material Particulado , Agua , Aerosoles/análisis , Compuestos Orgánicos/análisis , Espectrometría de Masas en Tándem
6.
Sci Total Environ ; 689: 312-321, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276999

RESUMEN

Dissolved organic matters (DOMs) in fine particulate matters (PM2.5) play a crucial role in global climate change and carbon cycle. However, the chemical components of DOMs are poorly understood due to its ultra-complexity. In this study, DOMs in atmospheric PM2.5 collected during the heating period in coastal city Dalian were analyzed with ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometer, and the molecular composition was characterized. A large number of monoisotopic molecular formulas were assigned to DOMs, which could be classified into CHO, CHNO, CHOS, and CHNOS subgroups. A total of 4228 molecular formulas were identified in DOMs collected in hazy days, while only 2313 components were found in DOMs collected in normal days. CHO group was the dominated components in normal days, whereas CHNO group gave significantly higher contributions in hazy days. The S-containing (CHOS and CHNOS) groups posed the highest relative percentages in both normal and hazy days. In addition, potential emission sources were discussed according to the chemical component analysis. The van Krevelent diagram illustrated that lignin-like and protein/amino sugar family species were the most abundant subclasses in DOMs; and 78% and 94% of DOMs in atmospheric PM2.5 collected from Dalian could come from biogenic origins in hazy and normal days, respectively. More compounds in hazy days were derived from anthropogenic emissions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA