Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38507928

RESUMEN

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Asunto(s)
Técnicas Biosensibles , Polímeros Impresos Molecularmente , Colorimetría/métodos , Peroxidasa/química , Peroxidasas
2.
Biosensors (Basel) ; 12(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36551043

RESUMEN

A flexible electrochemical sensor based on the carbon felt (CF) functionalized with Bisphenol A (BPA) synthetic receptors was developed. The artificial Bisphenol A receptors were grafted on the CF by a simple thermal polymerization molecular imprinting process. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and electrochemical characterizations were used to analyze the receptors. Characterization results demonstrated that the Bisphenol A synthetic receptors successfully formed on the CFs surface. Because the synthetic receptor and the porous CFs were successfully combined, the sensor displayed a better current response once Bisphenol A was identified. The sensor's linear range was determined to be from 0.5 to 8.0 nM and 10.0 to 300.0 nM, with a detection limit of 0.36 nM. Even after being bent and stretched repeatedly, the electrode's performance was unaffected, demonstrating the robustness, adaptability and viability of installing the sensor on flat or curved surfaces for on-site detection. The designed electrochemical sensor has been used successfully to identify Bisphenol A in milk samples with satisfactory results. This work provided a promising platform for the design of implantable, portable and miniaturized sensors.


Asunto(s)
Receptores Artificiales , Humanos , Técnicas Electroquímicas/métodos , Electrodos , Carbono/química , Compuestos de Bencidrilo , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...