Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202415794, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291302

RESUMEN

In-depth understanding of the real-time behaviors of active sites during electrocatalysis is essential for the advancement of sustainable energy conversion. Recently, the concept of dynamic active sites has been recognized as a potent approach for creating self-adaptive electrocatalysts that can address a variety of electrocatalytic reactions, outperforming traditional electrocatalysts with static active sites. Nonetheless, the comprehension of the underlying principles that guide the engineering of dynamic active sites is presently insufficient. In this review, we systematically analyze the fundamentals of dynamic active sites for electrocatalysis and consider important future directions for this emerging field. We reveal that dynamic behaviors and reversibility are two crucial factors that influence electrocatalytic performance. By reviewing recent advances in dynamic active sites, we conclude that implementing dynamic electrocatalysis through variable reaction environments, correlating the model of dynamic evolution with catalytic properties, and developing localized and ultrafast in-situ/operando techniques are keys to designing high-performance dynamic electrocatalysts. This review paves the way to the development of the next-generation electrocatalyst and the universal theory for both dynamic and static active sites.

2.
Adv Mater ; 35(44): e2306097, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37607336

RESUMEN

Developing non-precious catalysts with long-term catalytic durability and structural stability under industrial conditions is the key to practical alkaline anion exchange membrane (AEM) water electrolysis. Here, an energy-saving approach is proposed to synthesize defect-rich iron nickel oxyhydroxide for stability and efficiency toward the oxygen evolution reaction. Benefiting from in situ cation exchange, the nanosheet-nanoflake-structured catalyst is homogeneously embedded in, and tightly bonded to, its substrate, making it ultrastable at high current densities. Experimental and theoretical calculation results reveal that the introduction of Ni in FeOOH reduces the activation energy barrier for the catalytic reaction and that the purposely created oxygen defects not only ensure the exposure of active sites and maximize the effective catalyst surface but also modulate the local coordination environment and chemisorption properties of both Fe and Ni sites, thus lowering the energy barrier from *O to *OOH. Consequently, the optimized d-(Fe,Ni)OOH catalyst exhibits outstanding catalytic activity with long-term durability under both laboratory and industrial conditions. The large-area d-(Fe,Ni)OOH||NiMoN pair requires 1.795 V to reach a current density of 500 mA cm-2 at an absolute current of 12.5 A in an AEM electrolyzer for overall water electrolysis, showing great potential for industrial water electrolysis.

3.
Nanomicro Lett ; 15(1): 157, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336833

RESUMEN

NiMo-based nanostructures are among the most active hydrogen evolution reaction (HER) catalysts under an alkaline environment due to their strong water dissociation ability. However, these nanostructures are vulnerable to the destructive effects of H2 production, especially at industry-standard current densities. Therefore, developing a strategy to improve their mechanical strength while maintaining or even further increasing the activity of these nanocatalysts is of great interest to both the research and industrial communities. Here, a hierarchical interconnected NiMoN (HW-NiMoN-2h) with a nanorod-nanowire morphology was synthesized based on a rational combination of hydrothermal and water bath processes. HW-NiMoN-2h is found to exhibit excellent HER activity due to the accomodation of abundant active sites on its hierarchical morphology, in which nanowires connect free-standing nanorods, concurrently strengthening its structural stability to withstand H2 production at 1 A cm-2. Seawater is an attractive feedstock for water electrolysis since H2 generation and water desalination can be addressed simultaneously in a single process. The HER performance of HW-NiMoN-2h in alkaline seawater suggests that the presence of Na+ ions interferes with the reation kinetics, thus lowering its activity slightly. However, benefiting from its hierarchical and interconnected characteristics, HW-NiMoN-2h is found to deliver outstanding HER activity of 1 A cm-2 at 130 mV overpotential and to exhibit excellent stability at 1 A cm-2 over 70 h in 1 M KOH seawater.

4.
Adv Mater ; 34(21): e2201774, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35363922

RESUMEN

Achieving efficient and durable nonprecious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is desirable but remains a significant challenge. Here, a heterogeneous Ni-MoN catalyst consisting of Ni and MoN nanoparticles on amorphous MoN nanorods that can sustain large-current-density HER with outstanding performance is demonstrated. The hierarchical nanorod-nanoparticle structure, along with a large surface area and multidimensional boundaries/defects endows the catalyst with abundant active sites. The hydrophilic surface helps to achieve accelerated gas-release capabilities and is effective in preventing catalyst degradation during water electrolysis. Theoretical calculations further prove that the combination of Ni and MoN effectively modulates the electron redistribution at their interface and promotes the sluggish water-dissociation kinetics at the Mo sites. Consequently, this Ni-MoN catalyst requires low overpotentials of 61 and 136 mV to drive current densities of 100 and 1000 mA cm-2 , respectively, in 1 m KOH and remains stable during operation for 200 h at a constant current density of 100 or 500 mA cm-2 . This good HER catalyst also works well in alkaline seawater electrolyte and shows outstanding performance toward overall seawater electrolysis with ultralow cell voltages.

5.
Nanotechnology ; 28(27): 275401, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28531092

RESUMEN

We report the first demonstration of a high-efficiency photoelectrochemical (PEC) water splitting reaction using a novel Si NWs/WO3 core/shell photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching process followed by dip-coating, airing and annealing methods. The dense and vertically aligned Si NWs/WO3 core/shell nanostructure were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. In comparison to planar n-Si, Si NWs and planar Si/WO3, the Si NWs/WO3 samples showed significantly enhanced photocurrent over the entire potential sweep range. More significantly, the Si NWs/WO3 samples have an exceptionally low photocurrent onset potential of -0.6393 V versus reversible hydrogen electrode (RHE), indicating very efficient charge separation and charge transportation processes. The as-prepared electrode also has a photocurrent density of 2.7 mA cm-2 at 0.6107 V versus RHE in 0.5 M Na2SO4 solution under simulated solar light irradiation (100 mW cm-2 from 300 W Xenon lamp coupled with an AM 1.5 G filter). An optimal solar-to-hydrogen efficiency of about 1.9% was achieved at 0.2676 V versus RHE. Electrochemical impedance spectroscopy was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may due to the increased charge separation. The x-ray photoelectron spectroscopy measurements indicated the chemical composition of the Si NWs/WO3 nanostructure. Our work has provided an efficient strategy to improve the energy conversion efficiency and photocurrent of water splitting materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA