Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36017, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229496

RESUMEN

Background: Colorectal cancer is a predominant contributor to global cancer-related morbidity and mortality. The oncogene PTOV1 has been linked to various human malignancies, yet its specific role in CRC pathogenesis requires further elucidation. Methods: Our study used a comprehensive array of authoritative bioinformatics tools, such as TIMER, UCSC Xena, GEO, Human Protein Atlas, UALCAN, CIBERSORTx and others which used to investigate the complex effects of PTOV1 on gene expression profiles, diagnostic and prognostic biomarkers, tumor immunology, signaling pathways, epigenetic alterations, and genetic mutations. Gene expression validation was conducted using Western blot and qRT-PCR. The in vitro proliferative and migratory potentials of CRC cells were evaluated using CCK-8 assays, colony formation, and transwell migration assays, respectively. MSP was applied to assess the methylation status of the PTOV1 promoter region. Results: Our results reveal a significant association between increased PTOV1 expression, driven by promoter hypomethylation, and poor patient prognosis in CRC. Elevated PTOV1 levels were positively correlated with the enrichment of diverse immune cell subsets and immune-related molecules within the tumor microenvironment. In vitro assays demonstrated that PTOV1 knockdown markedly reduced CRC cell proliferation, colony formation, and migration, while ectopic PTOV1 expression had the opposite effect. Importantly, PTOV1 was shown to regulate the PI3K-AKT signaling pathway, significantly influencing the phosphorylation of AKT1 and the expression of cell cycle regulators P21 and P27. The pharmacological inhibition of AKT1 phosphorylation using MK2206 effectively counteracted the proliferative effects induced by PTOV1 overexpression. Conclusion: The ability of PTOV1 to enhance CRC cell proliferation via modulation of the AKT1 signaling pathway establishes it as a potential therapeutic target and a promising biomarker for prognostic stratification in CRC.

2.
Biofabrication ; 16(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241709

RESUMEN

The suitable microenvironment of bone regeneration is critically important for periodontitis-derived bone defect repair. Three major challenges in achieving a robust osteogenic reaction are the exist of oral inflammation, pathogenic bacteria invasion and unaffluent seed cells. Herein, a customizable and multifunctional 3D-printing module was designed with glycidyl methacrylate (GMA) modified epsilon-poly-L-lysine (EPLGMA) loading periodontal ligament stem cells (PDLSCs) and myeloid-derived suppressive cells membrane vesicles (MDSCs-MV) bioink (EPLGMA/PDLSCs/MDSCs-MVs, abbreviated as EPM) for periodontitis-derived bone defect repair. The EPM showed excellent mechanical properties and physicochemical characteristics, providing a suitable microenvironment for bone regeneration.In vitro, EPMs presented effectively kill the periodontopathic bacteria depend on the natural antibacterial properties of the EPL. Meanwhile, MDSCs-MV was confirmed to inhibit T cells through CD73/CD39/adenosine signal pathway, exerting an anti-inflammatory role. Additionally, seed cells of PDLSCs provide an adequate supply for osteoblasts. Moreover, MDSCs-MV could significantly enhance the mineralizing capacity of PDLSCs-derived osteoblast. In the periodontal bone defect rat model, the results of micro-CT and histological staining demonstrated that the EPM scaffold similarly had an excellent anti-inflammatory and bone regeneration efficacyin vivo. This biomimetic and multifunctional 3D-printing bioink opens new avenues for periodontitis-derived bone defect repair and future clinical application.


Asunto(s)
Periodontitis , Ratas , Animales , Periodontitis/terapia , Periodontitis/metabolismo , Células Madre/metabolismo , Osteogénesis , Inflamación , Ligamento Periodontal/metabolismo , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Diferenciación Celular , Células Cultivadas
3.
World J Stem Cells ; 13(5): 342-365, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34136070

RESUMEN

Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.

4.
ACS Chem Biol ; 7(4): 646-51, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22248379

RESUMEN

YM-216391, an antitumor natural product, represents a new class of cyclic peptides containing a polyoxazole-thiazole moiety. Herein we describe its gene cluster encoding the biosynthetic paradigm featuring a ribosomally synthesizing precursor peptide followed by a series of novel posttranslational modifications, which include (i) cleavage of both N-terminal leader peptide and C-terminal extension peptide and cyclization in a head-to-tail fashion, (ii) conversion of an L-Ile to D-allo-Ile, and (iii) ß-hydroxylation of Phe by a P450 monooxygenase followed by further heterocyclization and oxidation to form a phenyloxazole moiety. The cluster was heterologously expressed in Streptomyces lividans to bypass difficult genetic manipulation. Deletion of the ymR3 gene, encoding a putative transcriptional regulator, increased the YM-216391 yield about 20-fold higher than the original yields for the heterologous expression of wild-type cluster, which set the stage for further combinatorial biosynthesis.


Asunto(s)
Clonación Molecular/métodos , Familia de Multigenes , Péptidos Cíclicos/biosíntesis , Ingeniería de Proteínas/métodos , Antineoplásicos , Productos Biológicos , Genes Bacterianos , Oxazoles , Péptidos Cíclicos/genética , Streptomyces/genética
5.
Yi Chuan ; 27(4): 605-10, 2005 Jul.
Artículo en Chino | MEDLINE | ID: mdl-16120587

RESUMEN

Kentucky bluegrass (Poa pratensis L.) is a hardy, persistent forage and turf grass adapted to a wide range of soils and climates. Its ever-increasing adoption in highly cared-for sports fields has attracted the attention of many seed companies. However in the past, the breeding of elite varieties was often hampered by the extreme complexity of the genome. The polymorphism is important for broading the genetic basis and may be exploited for application of heterosis. The genetic relationship of 16 bluegrass cultivars, including 15 accessions Kentucky bluegrass cultivars and 1 entries Canada bluegrass (Poa compressa L.) cultivar from different breeding company were analyzed using 25 RAPD markers. 25 RAPD primers generated 218 bands, of which 196 bands (89.91%) were polymorphism. It showed that the Canada Bluegrass was separated from other Kentucky Bluegrass and genetic polymorphism in the Kentucky Bluegrass cultivars was low, the genetic similarity among the cultivars fell between 66%-98%. Dendrogram obtained using these molecular markers were partly in agreement with their separated morphologic character. Cultivars from the same company were not clustered in one group.


Asunto(s)
Poa/genética , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Análisis por Conglomerados , Cartilla de ADN , ADN de Plantas/análisis , ADN de Plantas/genética , Genotipo , Filogenia , Poa/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA