Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947692

RESUMEN

We numerically and experimentally demonstrate a terahertz metadevice consisting of split-ring resonators (SRRs) present within square metallic rings. This device can function as a dual-band polarization converter by breaking the symmetry of SRRs. Under x-polarized incidence, the metastructure is able to convert linearly polarized (LP) light into a left-hand circular-polarized (LCP) wave. Intriguingly, under y-polarized incidence, frequency-dependent conversion from LP to LCP and right-hand circular-polarized (RCP) states can be achieved at different frequencies. Furthermore, reconfigurable LCP-to-LP and RCP-to-LP switching can be simulated by integrating the device with patterned graphene and changing its Fermi energy. This dual-band and multi-state polarization control provides an alternative solution to developing compact and multifunctional components in the terahertz regime.

2.
Opt Express ; 31(19): 31108-31115, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710638

RESUMEN

Topological photonic crystals provide a new platform for designing nanophotonic devices with robustness. Especially, all-optical devices, which use the light controlling light, based on nonlinear topological photonic crystals, have not been reported yet. In this article, we numerically investigate the robust self-manipulation of light flow in silicon topological photonic crystal waveguides based on the Kerr nonlinearity of silicon and topological edge states of photonic crystal waveguides. By adjusting the intensity of incident light at a communication wavelength of 1550 nm, the transmission path of the light flow in waveguides can be effectively controlled, and such manipulation is immune to some disturbances of nanostructures and thus shows the robustness. The results indicate that nonlinear topological photonic crystals have potential applications in on-chip integrated all-optical photonic devices.

3.
Opt Express ; 31(14): 23127-23139, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475405

RESUMEN

We numerically investigate linear and nonlinear optical responses in metasurfaces consisting of Au double-gap split ring resonators (DSRRs). Symmetry-protected dual bound states in the continuum (BICs) in such plasmonic metasurfaces are observed at the near-infrared optical regime. Efficient second harmonic generation (SHG) is obtained at the quasi-BIC models due to the symmetry broken. The optimized SHG responses are obtained at the critical couplings between radiation and nonradiation processes at the linearly x- and y-polarized light, respectively. High conversion efficiency of SHG of a value 10-6 is arrived at the fundamental intensity of 10 GW/cm2 at the quasi-BIC wavelength under the y-polarized illumination. Large extrinsic and tunable chirality of linear and nonlinear optical responses empowered by quasi-BICs is acquired in asymmetry metasurfaces at oblique circularly polarized incidence. The results indicate that the plasmonic metasurfaces of symmetry-protected BICs at the near-infrared optical regime have great potential applications in the on-chip efficient frequency conversion, and the linear and nonlinear chiral manipulation.

4.
Opt Express ; 30(15): 26455-26463, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236836

RESUMEN

We investigate the nonlinear optical harmonic generation behaviors near the bound-states in the continuum (BICs) in hybrid plasmonic-photonic structures. The hybrid structures are designed to consist of a plasmonic grating covered with a nonlinear dielectric waveguide layer, which support two distinct groups of BICs, i.e. the symmetry-protected BICs and Friedrich-Wintgen BICs. The evolution of second- and third-harmonic generation (SHG and THG) near the two groups of BICs was studied. The high dependence of nonlinear response on the local field distribution and tensor components of susceptibility of nonlinear materials was determined. Especially, there exists optimized angles of incidence for efficient SHG and THG response due to the interaction of photonic and plasmonic modes. The results are important to understand the nonlinear response behaviors in hybrid plasmonic-photonic structures and to design the nonlinear photonic devices.

5.
Opt Express ; 30(11): 19030-19041, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221690

RESUMEN

The electromagnetic fields distributed on the surface region of the nanostructure is very important to improve the performance of the sensor. Here, we proposed a highly sensitive sensor based on toroidal dipole (TD) governed by bound state in the continuum (BIC) in all-dielectric metasurface consisting of single non-coaxial core-shell cylinder nanostructure array. The excitation of TD resonance in a single nanostructure is still challenging. The designed nanostructure not only supports TD resonance in a single nanostructure but also has very high Q-factor. More importantly, its electric field distributes at the surface of outer cylinder-shell, which is very suitable for biosensing. To evaluate the sensing performance of our proposed structure, we investigated the sensitivity and the figure of merit (FOM) of nanostructure with different structural parameters. Maximum sensitivity and FOM can reach up to 342 nm/RIU and 1295 when the asymmetric parameter d =10 nm. These results are of great significance to the research of TD resonance and the development of ultrasensitive sensor.

6.
Opt Lett ; 47(20): 5260-5263, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240337

RESUMEN

We report an all-optical self-switching performed at an ultralow-level of intensity in a nanostructured moiré superlattice on a silicon platform. The moiré superlattice was formed by twisting two sets of triangular lattices in a silicon membrane in the same layer with a twist angle of 9.43°. The near flatband was formed, and the electric field was well confined in the center of the superlattice, which enabled all-optical switching under an ultralow intensity when the Kerr nonlinearity of silicon was considered. The intensity, which was reduced to 300 W/m2 and even 20 W/m2, can cause the transmittance of the nanostructure to change from 0 to 80% under x- and y-polarized pump light, respectively, and could be further decreased by optimizing the nanostructure or nonlinear materials. The results indicate that moiré superlattices fabricated from nonlinear materials are promising for integrated all-optical devices.

7.
Opt Express ; 30(6): 10187-10198, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299428

RESUMEN

Localized surface plasmon resonance (LSPR) optical fiber biosensing is an advanced and powerful label-free technique which gets great attention for its high sensitivity to refractive index change in surroundings. However, the pursuit of a higher sensitivity is still challenging and should be further investigated. In this paper, based on a monolayer graphene/gold nanoparticles (Grm/Au NPs) three-dimensional (3D) hybrid structure, we fabricated a D-shaped plastic optical fiber (D-POF) LSPR sensor using a facile two-step method. The coupling enhancement of the resonance of this multilayer structure was extremely excited by the surface plasmon property of the stacked Au NPs/Grm layer. We found that the number of plasmonic structure layers was of high importance to the performance of the sensor. Moreover, the optimal electromagnetic field enhancement effect was found in three-layer plasmonic structure. Besides, the n*(Grm/Au NPs)/D-POF sensor exhibited outstanding performance in sensitivity (2160 nm/RIU), linearity (linear fitting coefficient R2 = 0.996) and reproducibility. Moreover, the sensor successfully detected the concentration of glucose, achieving a sensitivity of 1317.61 nm/RIU, which suggested a promising prospect for the application in medicine and biotechnology.


Asunto(s)
Grafito , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Fibras Ópticas , Reproducibilidad de los Resultados , Resonancia por Plasmón de Superficie/métodos
8.
Nano Lett ; 22(4): 1541-1548, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35118860

RESUMEN

Optical regulation strategy with the aid of hybrid materials can significantly optimize the performance of terahertz devices. Gold nanobipyramids (AuNBPs) with synthetical tunability to the near-infrared band show strong local field enhancement, which improves optical coupling at the interface and benefits the modulation performance. We design AuNBPs-integrated terahertz modulators with multiple structured surfaces and demonstrate that introducing AuNBPs can effectively enhance their modulation depths. In particular, an ultrahigh modulation enhancement of 1 order of magnitude can be achieved in the AuNBPs hybrid metamaterials accompanied by the multifunctional modulation characteristics. By application of the coupled Lorentz oscillator model, the theoretical calculation suggests that the optical regulation with AuNBPs originates from increased damping rate and higher coupling coefficient under pump excitation. Additionally, a terahertz spatial light modulator is constructed to demonstrate multiple imaging display and consume extremely low power, which is promising for the potential application in spatial and frequency selective imaging.

9.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34835608

RESUMEN

We model optical bistability in all-dielectric guide-mode resonance grating (GMR) nanostructures working at quasi-bound states in the continuum (BICs). The complementary metal-oxide-semiconductor (CMOS) compatible material silicon nitride (SiN) is used for the design of nanostructures and simulations. The ultra-low threshold of input intensity in the feasible nanostructure for nanofabrication is obtained at the level of ~100 W/cm2 driven by quasi-BICs. Additionally, the resonance wavelength in the GMR nanostructure can be widely tuned by incident angles with the slightly changed Q-factor that enables the optical bistable devices to work efficiently over a wide spectrum. The impact of the defects of grating that may be introduced in the fabrication process on the optical properties is discussed, and the tolerance of the defects to the optical performance of the device is confirmed. The results indicate that the GMR nanostructures of broadband and ultra-low threshold optical bistability driven by quasi-BICs are promising in the application of all-optical devices.

10.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34684995

RESUMEN

A high Q-factor of the nanocavity can effectively reduce the threshold of nanolasers. In this paper, a modified nanostructure composed of a silver grating on a low-index dielectric layer (LID) and a high-index dielectric layer (HID) was proposed to realize a nanolaser with a lower lasing threshold. The nanostructure supports a hybrid plasmonic waveguide mode with a very-narrow line-width that can be reduced to about 1.79 nm by adjusting the thickness of the LID/HID layer or the duty ratio of grating, and the Q-factor can reach up to about 348. We theoretically demonstrated the lasing behavior of the modified nanostructures using the model of the combination of the classical electrodynamics and the four-level two-electron model of the gain material. The results demonstrated that the nanolaser based on the hybrid plasmonic waveguide mode can really reduce the lasing threshold to 0.042 mJ/cm2, which is about three times lower than the nanolaser based on the surface plasmon. The lasing action can be modulated by the thickness of the LID layer, the thickness of the HID layer and the duty cycle of grating. Our findings could provide a useful guideline to design low-threshold and highly-efficient miniaturized lasers.

11.
Nanomaterials (Basel) ; 11(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34578679

RESUMEN

A stable, passively Q-switched Yb:CaGdAlO4 laser based on Mo:BiVO4 saturable absorber was demonstrated. Close observations of the structure and morphology of the nanoparticles by using transmission electron microscope, Raman spectrum and linear absorption were measured. The nonlinear transmission of Mo:BiVO4 was characterized by a 30 ps laser with a central wavelength of 1064 nm and a repetition rate of 10 Hz. The experimental maximum output power of the pulsed laser was 510 mW with a repetition rate of 87 kHz and pulse width of 3.18 µs, corresponding to a peak power of 1.84 W and a single pulse energy of 5.8 µJ. The experimental results indicate that Mo:BiVO4-SA is a great candidate for passively Q-switched lasers in the near infrared region.

12.
Opt Express ; 29(11): 17286-17294, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154274

RESUMEN

We investigate second harmonic generation (SHG) in all-dielectric resonance nanostructures of high-Q factors assisted by quasi-bound states in the continuum (quasi-BICs). The typical resonators, e.g., guided-mode resonance gratings and asymmetric metasurfaces, fabricated by AlGaAs were numerically studied with the consideration of nonlinear refraction of AlGaAs. The resonance peak and line-shape of linear transmission and SHG spectra in the resonators can be dramatically changed under intense pump intensities. The SHG conversion efficiency in the nanostructures working at quasi-BICs is much lower than the traditionally expected values without considering the nonlinear refraction of dielectrics. The ultimate SHG conversion efficiency is finally obtained. The investigation has the significance for the design and understanding of efficient nonlinear metasurfaces of high-Q factors.

13.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069185

RESUMEN

Surface plasmon polaritons (SPPs) have been attracting considerable attention owing to their unique capabilities of manipulating light. However, the intractable dispersion and high loss are two major obstacles for attaining high-performance plasmonic devices. Here, a graphene nanoribbon gap waveguide (GNRGW) is proposed for guiding dispersionless gap SPPs (GSPPs) with deep-subwavelength confinement and low loss. An analytical model is developed to analyze the GSPPs, in which a reflection phase shift is employed to successfully deal with the influence caused by the boundaries of the graphene nanoribbon (GNR). It is demonstrated that a pulse with a 4 µm bandwidth and a 10 nm mode width can propagate in the linear passive system without waveform distortion, which is very robust against the shape change of the GNR. The decrease in the pulse amplitude is only 10% for a propagation distance of 1 µm. Furthermore, an array consisting of several GNRGWs is employed as a multichannel optical switch. When the separation is larger than 40 nm, each channel can be controlled independently by tuning the chemical potential of the corresponding GNR. The proposed GNRGW may raise great interest in studying dispersionless and low-loss nanophotonic devices, with potential applications in the distortionless transmission of nanoscale signals, electro-optic nanocircuits, and high-density on-chip communications.

14.
Opt Express ; 29(8): 12634-12643, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33985017

RESUMEN

High-Q factor can enhance the interaction between light and matter, which is an important parameter to decrease the threshold of nanolasers. Here, we theoretically propose an eccentric nanoring structure with a high and controllable Q factor to realize a low-threshold and controllable nanolaser by amplifying the quasi-bound states in the continuum (quasi-BIC). The designed nanostructure supports a quasi-BIC because of the symmetry protection-breaking of the nanostructure. The quasi-BIC has a very high Q factor of about 9.6×104 and can also be adjusted by changing structural parameters. We use the energy level diagram of the four-level two-electron system to study the lasing action of the eccentric nanoring structure. The results show that the nanolaser has a relatively low threshold of about 6.46 µJ/cm2. Furthermore, the lasing behavior can be tuned by controlling the structural parameters of the eccentric circular ring structure.

15.
ACS Appl Mater Interfaces ; 13(11): 13565-13575, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33720680

RESUMEN

We have demonstrated the active manipulation of metamaterial-induced transparency (MIT) in a terahertz hybrid metamaterial with graphene overlayer under photoexcitation. It is found that the introduction of graphene can greatly modify the resonant dips and transparency window through the formed depolarization field around unequal-length double bars to weaken dipole resonances and their destructive interference. Transient control of MIT behaviors is determined by the photogenerated carrier dynamics, which influences the distributions of currents and electric fields in the resonant region to hinder the near-field coupling of two bright modes. Optical modulation depth is sensitive to bar spacing due to an anomalous increased double-bar coupling involving intracell and intercell interaction. Heterointerface formed by the added graphene with substrate could further enhance terahertz response via effective separation of the photoexcited carriers. Theoretical calculation based on the coupled Lorentz oscillator model reveals that the photoinduced terahertz response mainly originates from the coupling and damping in hybrid structures. Our findings could facilitate the development of graphene-based dynamical terahertz modulators and optoelectronic devices.

16.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652800

RESUMEN

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10-10 and 10-8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.

17.
Opt Lett ; 46(5): 1029-1032, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649649

RESUMEN

We report the bistability of second- and third-harmonic generation in monolayer graphene plasmonics supported by graphene nanoribbon arrays. The nonlinear optical bistability of harmonic generation at the ultra-low threshold intensity ∼100kW/cm2, along with the traditional linear optical bistability of transmittance, is observed due to the different local fundamental fields at the lower and higher state when the Kerr effect of graphene is considered. Importantly, the working fundamental wavelength can be tuned by the Fermi level of graphene and geometrical structure, which leads to the linear and nonlinear optical bistability available in a broadband for potential applications in advanced all-optical devices.

18.
Opt Express ; 28(23): 34024-34034, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182880

RESUMEN

We report the giant enhanced optical harmonic generation in all-dielectric silicon nitride (SiN) based resonant waveguide gratings (RWGs) of quasi-bound states in the continuum (BICs) of ultra-high Q factor and localized field. The BICs are realized by tuning the excitation of the guided modes modulated by geometry parameters of four-part grating layer. At a feasible structure of quasi-BIC for nanofabrication, the SHG and THG are enhanced by 103 and 106, compared with those from the RWGs of traditional two-part grating layer, respectively, and even up to 108 and 1010 compared with those from the planar SiN film, respectively. The resonance wavelength of quasi-BICs can be effectively tuned by the angle of incidence, while almost not affect the enhancement of SHG and THG response. Our results show that the efficiency harmonic generation from all-nonlinear-dielectric RWGs of quasi-BICs has potential applications for the integrated nonlinear photonic devices.

19.
Opt Lett ; 45(19): 5554-5557, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001945

RESUMEN

Few-layered graphdiyne (GDY) was successfully fabricated and applied as a saturable absorber to generate a watt-level ultrafast solid-state bulk laser. The maximum output power of up to 1.27 W was obtained with a pulse width of 23 ps and a repetition rate of 92.9 MHz, using Nd:YVO4 crystal as a gain medium. To the best of our knowledge, this is the first application of GDY as a mode locker in all-solid-state bulk lasers. These results indicate the promising potential of GDY for producing high-power ultrafast lasers.

20.
Opt Express ; 28(14): 20532-20542, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680110

RESUMEN

Optical bistability of linear reflectance and third-harmonic generation is investigated in a metasurface consisting of metallic grating coupled with metallic film spaced with nonlinear dielectric material. Linear optical reflectance and electric field enhancement are achieved for gaps <20 nm in the presence of classical nonlocality in metallic nanostructures. Enlarged thresholds from the higher to lower reflectance states are observed from 140 kW/cm2 for the local model to 300 kW/cm2 for the nonlocal model for 0.5-nm gaps. Though the linear reflectance almost overlaps for local and nonlocal models for 20-nm gaps, the optical bistability hysteresis loops retain large differences because local field differences are amplified owing to the relation of nonlinear refraction with square of local field and historical evolution of the optical bistability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...