Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 11(4): 1914-1920, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30644492

RESUMEN

Self-assembled nanostructures are important for determining the physical properties of epitaxial oxide films. We successfully fabricated perfectly ordered NiO nano-columns embedded in an antiferroelectric (AFE) PbZrO3 (PZO) matrix over large areas. In this system, a giant recoverable energy storage density of Wr = 24.6 J cm-3 and polarization of PS = 91 µC cm-2 were achieved in the structure of PZO : NiO nano-composites. These values are 333% and 253% larger than those of a pure PZO film, respectively. Additionally, the properties could be tuned by gradually changing the volume ratio of the constituents. Hence, we demonstrate a new approach for enhancing the energy storage of AFE materials and exercising control over nano-column-embedded nanocomposites.

2.
Nat Mater ; 17(3): 226-230, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29335610

RESUMEN

As a generic property, all substances transfer heat through microscopic collisions of constituent particles 1 . A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

3.
Nanoscale ; 7(48): 20635-41, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26597855

RESUMEN

The valence-band offset (VBO) of the La(0.67)Sr(0.33)MnO(3)/NiO (LSMO/NiO), LaMnO(3)/NiO (LMO/NiO), LSMO/LaNiO(3) (LSMO/LNO) and LMO/LaNiO(3) (LSMO/LNO) heterostructures has been investigated using X-ray photoemission spectroscopy. The VBO values are calculated to be -0.72, -0.05, +1.43 and +1.51 eV for the LSMO/NiO, LSMO/LNO, LMO/LNO and LMO/NiO heterostructures, respectively. Hence, when compared with NiO and LNO, the valence band of LSMO is shifted to a lower binding energy, whereas that of LMO is shifted to a higher binding energy. In addition, the charge transfer at the interfaces has been depicted as Mn(3.3+) + 0.7e→ Mn(2.6+), Mn(3.3+) + 0.1e→ Mn(3.2+), Mn(3.0+)- 0.4e→ Mn(3.4+) and Mn(3.0+)- 0.5e→ Mn(3.5+) for the LSMO/NiO, LSMO/LNO, LMO/LNO and LMO/NiO heterostructures, respectively. Thus, the charge transfer procedure can be described as electron hopping from NiO and LNO to LSMO in the LSMO/NiO and LSMO/LNO heterostructures, and electron hopping from LMO to NiO and LNO in the LMO/NiO and LSMO/LNO heterostructures. Therefore, the charge transfer is dependent on the VBO, and the charge transfer direction can be determined from the negative or positive values of the VBO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA