Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virulence ; 15(1): 2348252, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38712703

RESUMEN

Heartland virus (HRTV), an emerging tick-borne pathogenic bunyavirus, has been a concern since 2012, with an increasing incidence, expanding geographical distribution, and high pathogenicity in the United States. Infection from HRTV results in fever, thrombocytopenia, and leucopenia in humans, and in some cases, symptoms can progress to severe outcomes, including haemorrhagic disease, multi-organ failure, and even death. Currently, no vaccines or antiviral drugs are available for treatment of the HRTV disease. Moreover, little is known about HRTV-host interactions, viral replication mechanisms, pathogenesis and virulence, further hampering the development of vaccines and antiviral interventions. Here, we aimed to provide a brief review of HRTV epidemiology, molecular biology, pathogenesis and virulence on the basis of published article data to better understand this virus and provide clues for further study.


Asunto(s)
Bunyaviridae , Replicación Viral , Humanos , Virulencia , Animales , Infecciones por Bunyaviridae/virología , Thogotovirus/patogenicidad , Thogotovirus/genética , Thogotovirus/fisiología , Estados Unidos/epidemiología , Interacciones Huésped-Patógeno
2.
J Virol ; 98(1): e0156823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054738

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Proteínas de la Nucleocápside , Ribonucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Phlebovirus/fisiología , Interacciones Huésped-Patógeno
3.
Nat Commun ; 14(1): 7365, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963884

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 pathogen requiring urgent research and development efforts. The glycoproteins of CCHFV, Gn and Gc, are considered to play multiple roles in the viral life cycle by interactions with host cells; however, these interactions remain largely unclear to date. Here, we analyzed the cellular interactomes of CCHFV glycoproteins and identified 45 host proteins as high-confidence Gn/Gc interactors. These host molecules are involved in multiple cellular biological processes potentially associated with the physiological actions of the viral glycoproteins. Then, we elucidated the role of a representative cellular protein, HAX1. HAX1 interacts with Gn by its C-terminus, while its N-terminal region leads to mitochondrial localization. By the strong interaction, HAX1 sequestrates Gn to mitochondria, thus depriving Gn of its normal Golgi localization that is required for functional glycoprotein-mediated progeny virion packaging. Consistently, the inhibitory activity of HAX1 against viral packaging and hence propagation was further elucidated in the contexts of pseudotyped and authentic CCHFV infections in cellular and animal models. Together, the findings provide a systematic CCHFV Gn/Gc-cell protein-protein interaction map, but also unravel a HAX1/mitochondrion-associated host antiviral mechanism, which may facilitate further studies on CCHFV biology and therapeutic approaches.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Fiebre Hemorrágica de Crimea/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo
4.
Front Microbiol ; 14: 1281600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736093
5.
J Med Virol ; 95(6): e28881, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37314155

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented threat to human health since late 2019. Notably, the progression of the disease is associated with impaired antiviral interferon (IFN) responses. Although multiple viral proteins were identified as potential IFN antagonists, the underlying molecular mechanisms remain to be fully elucidated. In this study, we firstly demonstrate that SARS-CoV-2 NSP13 protein robustly antagonizes IFN response induced by the constitutively active form of transcription factor IRF3 (IRF3/5D). This induction of IFN response by IRF3/5D is independent of the upstream kinase, TBK1, a previously reported NSP13 target, thus indicating that NSP13 can act at the level of IRF3 to antagonize IFN production. Consistently, NSP13 exhibits a specific, TBK1-independent interaction with IRF3, which, moreover, is much stronger than that of NSP13 with TBK1. Furthermore, the NSP13-IRF3 interaction was shown to occur between the NSP13 1B domain and IRF3 IRF association domain (IAD). In agreement with the strong targeting of IRF3 by NSP13, we then found that NSP13 blocks IRF3-directed signal transduction and antiviral gene expression, counteracting IRF3-driven anti-SARS-CoV-2 activity. These data suggest that IRF3 is likely to be a major target of NSP13 in antagonizing antiviral IFN responses and provide new insights into the SARS-CoV-2-host interactions that lead to viral immune evasion.


Asunto(s)
COVID-19 , Factor 3 Regulador del Interferón , Proteínas no Estructurales Virales , Humanos , COVID-19/inmunología , Evasión Inmune , Factor 3 Regulador del Interferón/genética , Interferones , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
6.
Mol Cell Proteomics ; 22(7): 100579, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211047

RESUMEN

There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Chlorocebus aethiops , SARS-CoV-2/metabolismo , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Células Vero , Replicación Viral , ARN Viral
7.
J Med Virol ; 95(1): e28371, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458534

RESUMEN

Autophagy is emerging as a critical player in host defense against diverse infections, in addition to its conserved function to maintain cellular homeostasis. Strikingly, some pathogens have evolved strategies to evade, subvert or exploit different steps of the autophagy pathway for their lifecycles. Here, we present a new viral mechanism of manipulating autophagy for its own benefit with severe fever with thrombocytopenia syndrome bunyavirus (SFTSV, an emerging high-pathogenic virus) as a model. SFTSV infection triggers autophagy, leading to complete autophagic flux. Mechanistically, we show that the nonstructural protein of SFTSV (NSs) interacts with mTOR, the pivotal regulator of autophagy, by targeting its kinase domain and captures mTOR into viral inclusion bodies (IBs) induced by NSs itself. Furthermore, NSsimpairs mTOR-mediated phosphorylation of unc-51-like kinase 1 (ULK1) at Ser757, disrupting the inhibitory effect of mTOR on ULK1 activity and thus contributing to autophagy induction. Pharmacologic treatment and Beclin-1 knockout experimental results establish that, in turn, autophagy enhances SFTSV infection and propagation. Moreover, the minigenome reporter system reveals that SFTSV ribonucleoprotein (the transcription and replication machinery) activity can be bolstered by autophagy. Additionally, we found that the NSs proteins of SFTSV-related bunyaviruses have a conserved function of targeting mTOR. Taken together, we unravel a viral strategy of inducing pro-viral autophagy by interacting with mTOR, sequestering mTOR into IBs and hence provoking the downstream ULK1 pathway, which presents a new paradigm for viral manipulation of autophagy and may help inform future development of specific antiviral therapies against SFTSV and related pathogens.


Asunto(s)
Cuerpos de Inclusión , Phlebovirus , Humanos , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Cuerpos de Inclusión/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Phlebovirus/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas no Estructurales Virales/metabolismo
8.
Virol Sin ; 38(1): 34-46, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36075566

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 (BSL-4) pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) characterized by hemorrhagic manifestation, multiple organ failure and high mortality rate, posing great threat to public health. Despite the recently increasing research efforts on CCHFV, host cell responses associated with CCHFV infection remain to be further characterized. Here, to better understand the cellular response to CCHFV infection, we performed a transcriptomic analysis in human kidney HEK293 â€‹cells by high-throughput RNA sequencing (RNA-seq) technology. In total, 496 differentially expressed genes (DEGs), including 361 up-regulated and 135 down-regulated genes, were identified in CCHFV-infected cells. These regulated genes were mainly involved in host processes including defense response to virus, response to stress, regulation of viral process, immune response, metabolism, stimulus, apoptosis and protein catabolic process. Therein, a significant up-regulation of type III interferon (IFN) signaling pathway as well as endoplasmic reticulum (ER) stress response was especially remarkable. Subsequently, representative DEGs from these processes were well validated by RT-qPCR, confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV. Furthermore, we demonstrate that not only type I but also type III IFNs (even at low dosages) have substantial anti-CCHFV activities. Collectively, the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV, which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.


Asunto(s)
Fenómenos Biológicos , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/metabolismo , Interferón lambda , Células HEK293 , Antivirales/metabolismo
9.
J Med Virol ; 94(12): 6000-6015, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35965331

RESUMEN

Oncolytic viruses (OVs), including oncolytic herpes simplex viruses (oHSVs), are promising therapeutics against cancer. Here, we report two ICP6-mutated HSVs (type I) generated by CRISPR/Cas9, rHSV1/∆RR (with ICP6 ribonucleotide reductase [RR] domain deleted) and rHSV1/∆ICP6 (with a complete deletion of ICP6), exhibiting potent antitumor efficacy against lung adenocarcinoma. Both the mutants showed strong cytotoxicity in vitro, comparable with the control viruses expressing intact ICP6, but in relatively lower titers. Moreover, these mutant viruses exhibited preferential killing ability against lung tumor cells rather than normal lung fibroblast cells. Further, unlike the control HSV-1 causing severe illness or death in the mouse model, the ICP6-mutated viruses did not induce significant pathogenicity but instead effectively reduced tumor burden in vivo and led to 100% survival of the animals, indicating notable antitumor activity and attenuated virulence. In addition, rHSV1/∆RR seemed to have even better antitumor efficacy than rHSV1/∆ICP6, albeit no statistical significance in inhibition of tumor volume. Histopathologically, rHSV1/∆RR induced massive neutrophil infiltration to the tumor microenvironment and consistently, triggered more antitumor immune and neutrophil chemotactic cytokines or higher expression levels of them (indicated by quantitative polymerase chain reaction and transcriptome analyses). These results demonstrate the anti-adenocarcinoma potential of the CRISPR/Cas9-engineered ICP6 mutant HSV1, especially the rHSV1/∆RR, which likely induces stronger innate antitumor immune response. Together, these findings may provide new valuable clues for further development of OV-based therapeutics against lung adenocarcinoma or other types of tumors.


Asunto(s)
Adenocarcinoma del Pulmón , Herpesvirus Humano 1 , Neoplasias Pulmonares , Ribonucleótido Reductasas , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Herpesvirus Humano 1/genética , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Ratones , Ribonucleótido Reductasas/genética , Microambiente Tumoral
10.
Front Microbiol ; 12: 771934, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950119

RESUMEN

Bunyaviruses are members of the Bunyavirales order, which is the largest group of RNA viruses, comprising 12 families, including a large group of emerging and re-emerging viruses. These viruses can infect a wide variety of species worldwide, such as arthropods, protozoans, plants, animals, and humans, and pose substantial threats to the public. In view of the fact that a better understanding of the life cycle of a highly pathogenic virus is often a precondition for developing vaccines and antivirals, it is urgent to develop powerful tools to unravel the molecular basis of the pathogenesis. However, biosafety level -3 or even -4 containment laboratory is considered as a necessary condition for working with a number of bunyaviruses, which has hampered various studies. Reverse genetics systems, including minigenome (MG), infectious virus-like particle (iVLP), and infectious full-length clone (IFLC) systems, are capable of recapitulating some or all steps of the viral replication cycle; among these, the MG and iVLP systems have been very convenient and effective tools, allowing researchers to manipulate the genome segments of pathogenic viruses at lower biocontainment to investigate the viral genome transcription, replication, virus entry, and budding. The IFLC system is generally developed based on the MG or iVLP systems, which have facilitated the generation of recombinant infectious viruses. The MG, iVLP, and IFLC systems have been successfully developed for some important bunyaviruses and have been widely employed as powerful tools to investigate the viral replication cycle, virus-host interactions, virus pathogenesis, and virus evolutionary process. The majority of bunyaviruses is generally enveloped negative-strand RNA viruses with two to six genome segments, of which the viruses with bipartite and tripartite genome segments have mostly been characterized. This review aimed to summarize current knowledge on reverse genetic studies of representative bunyaviruses causing severe diseases in humans and animals, which will contribute to the better understanding of the bunyavirus replication cycle and provide some hints for developing designed antivirals.

12.
Front Microbiol ; 12: 709517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484148

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the tick-borne SFTS bunyavirus (SFTSV) resulting in a high fatality rate up to 30%. SFTSV is a negative-strand RNA virus containing three single-stranded RNA genome segments designated as L, M, and S, which respectively, encode the RNA-dependent RNA polymerase (RdRp), glycoproteins Gn and Gc, and nucleoprotein (N) and non-structural proteins (NSs). NSs can form inclusion bodies (IBs) in infected and transfected cells. A previous study has provided a clue that SFTSV NSs may be involved in virus-like or viral RNA synthesis; however, the details remain unclear. Our work described here reveals that SFTSV NSs can downregulate virus-like RNA synthesis in a dose-dependent manner within a cDNA-derived viral RNA synthesis system, i.e., minigenome (-) and minigenome (+) systems based on transfection, superinfection, and luciferase reporter activity determination; meanwhile, NSs also show a weak inhibitory effect on virus replication. By using co-immunoprecipitation (Co-IP) and RT-PCR combined with site-directed mutagenesis, we found that NSs suppress virus-like RNA or virus replication through interacting with N but not with RdRp, and the negative regulatory effect correlates closely with the IB structure it formed but is not associated with its role of antagonizing host innate immune responses. When the cytoplasmic structure of IB formed by SFTSV NSs was deprived, the inhibitory effect of NSs on virus-like RNA synthesis would weaken and even disappear. Similarly, we also evaluated other bandavirus NSs that cannot form IB in neither infected nor transfected cells, and the results showed that the NSs of Heartland bandavirus (HRTV) did not show a significant inhibitory effect on virus-like RNA synthesis within a minigenome system. Our findings provide experimental evidence that SFTSV NSs participate in regulating virus-like or viral RNA synthesis and the negative effect may be due to the NSs-N interaction.

13.
Comput Struct Biotechnol J ; 19: 4217-4225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336145

RESUMEN

The on-going pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to unprecedented medical and socioeconomic crises. Although the viral pathogenesis remains elusive, deficiency of effective antiviral interferon (IFN) responses upon SARS-CoV-2 infection has been recognized as a hallmark of COVID-19 contributing to the disease pathology and progress. Recently, multiple proteins encoded by SARS-CoV-2 have been shown to act as potential IFN antagonists with diverse possible mechanisms. Here, we summarize and discuss the strategies of SARS-CoV-2 for evasion of innate immunity (particularly the antiviral IFN responses), understanding of which will facilitate not only the elucidation of SARS-CoV-2 infection and pathogenesis but also the development of antiviral intervention therapies.

14.
Front Microbiol ; 12: 797189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087498

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS), an emerging life-threatening infectious disease caused by SFTS bunyavirus (SFTSV; genus Bandavirus, family Phenuiviridae, order Bunyavirales), has been a significant medical problem. Currently, there are no licensed vaccines or specific therapeutic agents available and the viral pathogenesis remains largely unclear. Developing appropriate animal models capable of recapitulating SFTSV infection in humans is crucial for both the study of the viral pathogenic processes and the development of treatment and prevention strategies. Here, we review the current progress in animal models for SFTSV infection by summarizing susceptibility of various potential animal models to SFTSV challenge and the clinical manifestations and histopathological changes in these models. Together with exemplification of studies on SFTSV molecular mechanisms, vaccine candidates, and antiviral drugs, in which animal infection models are utilized, the strengths and limitations of the existing SFTSV animal models and some important directions for future research are also discussed. Further exploration and optimization of SFTSV animal models and the corresponding experimental methods will be undoubtedly valuable for elucidating the viral infection and pathogenesis and evaluating vaccines and antiviral therapies.

15.
PLoS Pathog ; 16(12): e1009129, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284835

RESUMEN

Bunyavirus ribonucleoprotein (RNP) that is assembled by polymerized nucleoproteins (N) coating a viral RNA and associating with a viral polymerase can be both the RNA synthesis machinery and the structural core of virions. Bunyaviral N and RNP thus could be assailable targets for host antiviral defense; however, it remains unclear which and how host factors target N/RNP to restrict bunyaviral infection. By mass spectrometry and protein-interaction analyses, we here show that host protein MOV10 targets the N proteins encoded by a group of emerging high-pathogenic representatives of bunyaviruses including severe fever with thrombocytopenia syndrome virus (SFTSV), one of the most dangerous pathogens listed by World Health Organization, in RNA-independent manner. MOV10 that was further shown to be induced specifically by SFTSV and related bunyaviruses in turn inhibits the bunyaviral replication in infected cells in series of loss/gain-of-function assays. Moreover, animal infection experiments with MOV10 knockdown corroborated the role of MOV10 in restricting SFTSV infection and pathogenicity in vivo. Minigenome assays and additional functional and mechanistic investigations demonstrate that the anti-bunyavirus activity of MOV10 is likely achieved by direct impact on viral RNP machinery but independent of its helicase activity and the cellular interferon pathway. Indeed, by its N-terminus, MOV10 binds to a protruding N-arm domain of N consisting of only 34 amino acids but proving important for N function and blocks N polymerization, N-RNA binding, and N-polymerase interaction, disabling RNP assembly. This study not only advances the understanding of bunyaviral replication and host restriction mechanisms but also presents novel paradigms for both direct antiviral action of MOV10 and host targeting of viral RNP machinery.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Proteínas de la Nucleocápside/metabolismo , Phlebovirus/patogenicidad , ARN Helicasas/metabolismo , Replicación Viral/fisiología , Animales , Línea Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ribonucleoproteínas/metabolismo , Síndrome de Trombocitopenia Febril Grave/metabolismo
16.
Front Microbiol ; 11: 587317, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133055

RESUMEN

The emerging coronavirus disease (COVID-19) caused by SARS-CoV-2 has led to social and economic disruption globally. It is urgently needed to understand the structure and function of the viral proteins for understanding of the viral infection and pathogenesis and development of prophylaxis and treatment strategies. Coronavirus non-structural protein 1 (nsp1) is a notable virulence factor with versatile roles in virus-host interactions and exhibits unique characteristics on sequence, structure, and function mode. However, the roles and characteristics of SARS-CoV-2 nsp1 are currently unclear. Here, we analyze the nsp1 of SARS-CoV-2 from the following perspectives: (1) bioinformatics analysis reveals that the novel nsp1 is conserved among SARS-CoV-2 strains and shares significant sequence identity with SARS-CoV nsp1; (2) structure modeling shows a 3D α/ß-fold of SARS-CoV-2 nsp1 highly similar to that of the SARS-CoV homolog; (3) by detailed, functional review of nsp1 proteins from other coronaviruses (especially SARS-CoV) and comparison of the protein sequence and structure, we further analyzed the potential roles of SARS-CoV-2 nsp1 in manipulating host mRNA translation, antiviral innate immunity and inflammation response and thus likely promoting viral infection and pathogenesis, which are merited to be tested in the future. Finally, we discussed how understanding of the novel nsp1 may provide valuable insights into the designs of drugs and vaccines against the unprecedented coronavirus pandemic.

17.
J Biol Chem ; 295(28): 9691-9711, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32471869

RESUMEN

The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I protein (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are cytosolic pattern recognition receptors that recognize specific viral RNA products and initiate antiviral innate immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic member of the Bunyavirales RIG-I, but not MDA5, has been suggested to sense some bunyavirus infections; however, the roles of RLRs in anti-SFTSV immune responses remain unclear. Here, we show that SFTSV infection induces an antiviral response accompanied by significant induction of antiviral and inflammatory cytokines and that RIG-I plays a main role in this induction by recognizing viral 5'-triphosphorylated RNAs and by signaling via the adaptor mitochondrial antiviral signaling protein. Moreover, MDA5 may also sense SFTSV infection and contribute to IFN induction, but to a lesser extent. We further demonstrate that the RLR-mediated anti-SFTSV signaling can be antagonized by SFTSV nonstructural protein (NSs) at the level of RIG-I activation. Protein interaction and MS-based analyses revealed that NSs interacts with the host protein tripartite motif-containing 25 (TRIM25), a critical RIG-I-activating ubiquitin E3 ligase, but not with RIG-I or Riplet, another E3 ligase required for RIG-I ubiquitination. NSs specifically trapped TRIM25 into viral inclusion bodies and inhibited TRIM25-mediated RIG-I-Lys-63-linked ubiquitination/activation, contributing to suppression of RLR-mediated antiviral signaling at its initial stage. These results provide insights into immune responses to SFTSV infection and clarify a mechanism of the viral immune evasion, which may help inform the development of antiviral therapeutics.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Evasión Inmune , Helicasa Inducida por Interferón IFIH1/inmunología , Phlebovirus/inmunología , Síndrome de Trombocitopenia Febril Grave/inmunología , Factores de Transcripción/inmunología , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación/inmunología , Células A549 , Proteína 58 DEAD Box/genética , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Phlebovirus/genética , Receptores Inmunológicos , Síndrome de Trombocitopenia Febril Grave/genética , Síndrome de Trombocitopenia Febril Grave/patología , Transducción de Señal/genética , Transducción de Señal/inmunología , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
18.
Front Microbiol ; 11: 599, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322247

RESUMEN

Banyangvirus is a new genus (Phenuiviridae family, Bunyavirales order) that comprises a group of emerging tick-borne viruses with severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV) as virulent representatives. As segmented RNA viruses, bunyaviruses may have genome reassortment potential, increasing the concern about new life-threatening bunyavirus emergence. Using a series of combinatory minigenome reporter assays based on transfection and superinfection, we showed that replication machinery proteins of designated banyangviruses can recognize genomic untranslated regions (UTRs) of other banyangviruses and assemble heterogenous minigenomes into functional ribonucleoproteins (RNPs). Moreover, both heterogenous and heterozygous RNPs were efficiently packaged by viral glycoproteins into infectious virus-like particles, manifesting remarkable reassortment potential of banyangviruses. Meanwhile, UTR promoter strength of the three banyangvirus segments appeared to be M > L > S. Secondary structure analysis revealed a conservative non-basepairing protruding nucleotide in the terminal UTR panhandles of M and L (but not S) segments of all banyangviruses and some related phleboviruses (Phlebovirus genus). Furthermore, not only a conserved panhandle region but also the protruding nucleotide proved important for UTR function. Removal of the protruding nucleotide abated M and L UTR activities and compatibilities with heterogenous viral proteins, and introduction of a protruding nucleotide into S panhandle, conversely, enhanced UTR promoter strength and compatibility, revealing the significance of the protruding nucleotide as a new signature of the genomic panhandle structure in both UTR activity and reassortment potential. The study demonstrates not only banyangvirus reassortment potential but also the notable role of the protruding nucleotide in UTR function and reassortment, providing clues to viral evolution and replication mechanisms and perhaps benefiting disease control and prevention in the future.

19.
ACS Infect Dis ; 6(5): 857-870, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32167734

RESUMEN

Guertu virus (GTV) is a potentially highly pathogenic bunyavirus newly isolated in China, which is genetically related to the severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV), two other emerging life-threatening bunyaviruses. Previous studies suggested that SFTSV and HRTV antagonize the interferon (IFN) system by targeting antiviral signaling proteins in different ways. However, whether and how GTV counteracts the host innate immunity are unclear. Here, we found that GTV strongly inhibits both IFN induction and action through its nonstructural protein (NSs). Different from the NSs of SFTSV and HRTV, GTV NSs (G-NSs) induced the formation of two distinctive cytoplasmic structures, compact inclusion bodies (IBs) and extended filamentous structures (FSs). Protein interaction and colocalization analyses demonstrated that G-NSs interacts with TBK1 (TANK binding kinase-1, the pivotal kinase for IFN induction) and STAT2 (signal transducer and activator of transcription 2, the essential transcription factor for IFN action) and irreversibly sequesters the host proteins into the viral IBs and FSs. Consistently, G-NSs thus inhibited phosphorylation/activation and nuclear translocation of IFN-regulatory factor 3 (IRF3, the substrate of TBK1), diminishing the IFN induction. Furthermore, G-NSs sequestration of STAT2 blocked phosphorylation/activation and nuclear translocation of STAT2, disabling IFN action and host antiviral state establishment. Collectively, this study shows the robust subversion of the two phases of the IFN antiviral system by GTV and unravels the respective molecular mechanisms, exhibiting some notable differences from those employed by SFTSV and HRTV, providing insights into the virus-host interactions and pathogenesis, and probably also benefiting the prevention and treatment of the related infectious diseases in the future.


Asunto(s)
Bunyaviridae/inmunología , Interferones/inmunología , Proteínas no Estructurales Virales/inmunología , Interacciones Huésped-Patógeno , Humanos , Factor 3 Regulador del Interferón , Proteínas Serina-Treonina Quinasas , Factor de Transcripción STAT1 , Transducción de Señal
20.
Front Immunol ; 10: 1182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191546

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening infectious disease caused by a novel phlebovirus, SFTS virus (SFTSV). Currently, there is no vaccine or antiviral available and the viral pathogenesis remains largely unknown. In this study, we demonstrated that SFTSV infection results in substantial production of serum interferon-γ (IFN-γ) in patients and then that IFN-γ in turn exhibits a robust anti-SFTSV activity in cultured cells, indicating the potential role of IFN-γ in anti-SFTSV immune responses. However, the IFN-γ anti-SFTSV efficacy was compromised once viral infection had been established. Consistently, we found that viral nonstructural protein (NSs) expression counteracts IFN-γ signaling. By protein interaction analyses combined with mass spectrometry, we identified the transcription factor of IFN-γ signaling pathway, STAT1, as the cellular target of SFTSV for IFN-γ antagonism. Mechanistically, SFTSV blocks IFN-γ-triggered STAT1 action through (1) NSs-STAT1 interaction-mediated sequestration of STAT1 into viral inclusion bodies and (2) viral infection-induced downregulation of STAT1 protein level. Finally, the efficacy of IFN-γ as an anti-SFTSV drug in vivo was evaluated in a mouse infection model: IFN-γ pretreatment but not posttreatment conferred significant protection to mice against lethal SFTSV infection, confirming IFN-γ's anti-SFTSV effect and viral antagonism against IFN-γ after the infection establishment. These findings present a picture of virus-host arm race and may promote not only the understanding of virus-host interactions and viral pathogenesis but also the development of antiviral therapeutics.


Asunto(s)
Infecciones por Bunyaviridae/inmunología , Interferón gamma/inmunología , Phlebovirus/inmunología , Factor de Transcripción STAT1/inmunología , Animales , Antivirales/administración & dosificación , Antivirales/sangre , Antivirales/inmunología , Infecciones por Bunyaviridae/tratamiento farmacológico , Infecciones por Bunyaviridae/virología , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferón gamma/administración & dosificación , Interferón gamma/sangre , Ratones Endogámicos ICR , Phlebovirus/efectos de los fármacos , Phlebovirus/fisiología , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Células Vero , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...