Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570824

RESUMEN

In this study, a red-green dual-emitting fluorescent composite (RhB@MOFs) was constructed by introducing the red-emitting organic fluorescent dye rhodamine B (RhB) into metal-organic frameworks (Tb-MOFs). The sample can be used as a ratiometric fluorescent probe, which not only avoids errors caused by instrument and environmental instability but also has multiple applications in detection. The results indicated that the RhB@MOFs exhibited a turned-off response toward Fe3+ and a turned-on response for the continuous detection of ascorbic acid (AA). This ratiometric fluorescent probe possessed high sensitivity and excellent selectivity in the continuous determination of Fe3+ and AA. It is worth mentioning that remarkable fluorescence change could be clearly observed by the naked eye under a UV lamp, which is more convenient in applications. In addition, the mechanisms of Fe3+- and AA-induced fluorescence quench and recovery are discussed in detail. This ratiometric probe displayed outstanding recognition of heavy metal ions and biomolecules, providing potential applications for water quality monitoring and biomolecule determination.

2.
Molecules ; 28(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446579

RESUMEN

A novel fluorescent probe (C460@Tb-MOFs) was designed and synthesized by encapsulating the fluorescent dye 7-diethylamino-4-methyl coumarin (C460) into a terbium-based metal-organic framework using a simple ultrasonic impregnation method. It is impressive that this dye-modified metal-organic framework can specifically detect styrene and temperature upon luminescence quenching. The sensing platform of this material exhibits great selectivity, fast response, and good cyclability toward styrene detection. It is worth mentioning that the sensing process undergoes a distinct color change from blue to colorless, providing conditions for the accurate visual detection of styrene liquid and gas. The significant fluorescence quenching mechanism of styrene toward C460@Tb-MOFs is explored in detail. Moreover, the dye-modified metal-organic framework can also achieve temperature sensing from 298 to 498 K with high relative sensitivity at 498 K. The preparation of functionalized MOF composites with fluorescent dyes provides an effective strategy for the construction of sensors for multifunctional applications.


Asunto(s)
Colorantes Fluorescentes , Estructuras Metalorgánicas , Estireno , Temperatura , Terbio
3.
Molecules ; 28(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299041

RESUMEN

Nowadays, Mn4+-activated fluoride red phosphors with excellent luminescence properties have triggered tremendous attentions for enhancing the performance of white light-emitting diodes (WLEDs). Nonetheless, the poor moisture resistance of these phosphors impedes their commercialization. Herein, we proposed the dual strategies of "solid solution design" and "charge compensation" to design K2Nb1-xMoxF7 novel fluoride solid solution system, and synthesized the Mn4+-activated K2Nb1-xMoxF7 (0 ≤ x ≤ 0.15, x represents the mol % of Mo6+ in the initial solution) red phosphors via co-precipitation method. The doping of Mo6+ not only significantly improve the moisture resistance of the K2NbF7: Mn4+ phosphor without any passivation and surface coating, but also effectively enhance the luminescence properties and thermal stability. In particular, the obtained K2Nb1-xMoxF7: Mn4+ (x = 0.05) phosphor possesses the quantum yield of 47.22% and retains 69.95% of its initial emission intensity at 353 K. Notably, the normalized intensity of the red emission peak (627 nm) for the K2Nb1-xMoxF7: Mn4+ (x = 0.05) phosphor is 86.37% of its initial intensity after immersion for 1440 min, prominently higher than that of the K2NbF7: Mn4+ phosphor. Moreover, a high-performance WLED with high CRI of 88 and low CCT of 3979 K is fabricated by combining blue chip (InGaN), yellow phosphor (Y3Al5O12: Ce3+) and the K2Nb1-xMoxF7: Mn4+ (x = 0.05) red phosphor. Our findings convincingly demonstrate that the K2Nb1-xMoxF7: Mn4+ phosphors have a good practical application in WLEDs.


Asunto(s)
Fluoruros , Niobio , Luminiscencia
4.
Materials (Basel) ; 15(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431418

RESUMEN

In this work, CDs@Eu-UiO-66(COOH)2 (denoted as CDs-F2), a fluorescent material made up of carbon dots (CDs) and a Eu3+ functionalized metal-organic framework, has been designed and prepared via a post-synthetic modification method. The synthesized CDs-F2 presents dual emissions at 410 nm and 615 nm, which can effectively avoid environmental interference. CDs-F2 exhibits outstanding selectivity, great sensitivity, and good anti-interference for ratiometric sensing Cu2+ in water. The linear range is 0-200 µM and the limit of detection is 0.409 µM. Interestingly, the CDs-F2's silicon plate achieves rapid and selective detection of Cu2+. The change in fluorescence color can be observed by the naked eye. These results reveal that the CDs-F2 hybrid can be employed as a simple, rapid, and sensitive fluorescent probe to detect Cu2+. Moreover, the possible sensing mechanism of this dual-emission fluorescent probe is discussed in detail.

5.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235080

RESUMEN

Thiodiglycolic acid (TDGA) is a biomarker for monitoring vinyl chloride exposure. Exploring a facile, rapid and precise analysis technology to quantify TDGA is of great significance. In this research, we demonstrate a fluorescent sensor based on dual-emissive UiO-66 for TDGA detection. This ratiometric fluorescent material named C460@Tb-UiO-66-(COOH)2 was designed and synthesized by introducing organic dye 7-diethylamino-4-methylcoumarin (C460) and Tb3+ into UiO-66-(COOH)2. The as-obtained C460@Tb-UiO-66-(COOH)2 samples showed highly selective recognition, excellent anti-interference and rapid response characteristics for the recognition of TDGA. The detection limit is 0.518 mg·mL-1, which is much lower than the threshold of 20 mg·mL-1 for a healthy person. In addition, the mechanism of TDGA-induced fluorescence quenching is discussed in detail. This sensor is expected to detect TDGA content in human urine.


Asunto(s)
Cloruro de Vinilo , Biomarcadores/orina , Humanos , Estructuras Metalorgánicas , Ácidos Ftálicos , Tioglicolatos
6.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956753

RESUMEN

As an important biomarker in urine, the level of uric acid is of importance for human health. In this work, a Cu(II) functionalized metal-organic framework (Cu2+@Tb-MOFs) is designed and developed as a novel fluorescence probe for wide-range uric acid detection in human urine. The study shows that this fluorescence platform demonstrated excellent pH-independent stability, high water tolerance, and good thermal stability. Based on the strong interaction between metal ions and uric acid, the designed Cu2+@Tb-MOFs can be employed as efficient turn-on fluorescent probes for the detection of uric acid with wide detection range (0~104 µM) and high sensitivity (LOD = 0.65 µM). This probe also demonstrates an anti-interference property, as other species coexisted, and the possibility for recycling. The sensing mechanisms are further discussed at length. More importantly, we experimentally constructed a molecular logic gate operation based on this fluorescence probe for intelligent detection of uric acid. These results suggest the Cu(II) functionalized metal-organic framework can act as a prominent candidate for personalized monitoring of the concentration of uric acid in the human urine system.


Asunto(s)
Estructuras Metalorgánicas , Colorantes Fluorescentes , Humanos , Iones , Espectrometría de Fluorescencia/métodos , Ácido Úrico
7.
Inorg Chem ; 59(24): 17906-17915, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33252238

RESUMEN

In this work, BaYF5:20%Yb3+/2%Er3+/x%Bi3+ (abbreviated as BaYF5:Yb,Er,Bix, where x = 0-3.0) upconversion nanoparticles (UCNPs) with various doping concentrations of Bi3+ were synthesized through a simple hydrothermal method. The influence of the doping amount of Bi3+ on the microstructures and upconversion luminescence (UCL) properties of the BaYF5:Yb,Er,Bix UCNPs was studied in detail. The doping concentration of Bi3+ has little influence on the microstructures of the UCNPs but significantly impacts their UCL intensities. Under excitation of a 980 nm near-IR laser, the observed UCL intensities for the BaYF5:Yb,Er,Bix UCNPs display first an increasing trend and then a decreasing trend with an increase in the ratio x, giving a maximum at x = 2.5. A possible energy-transfer process and simplified energy levels of the BaYF5:Yb,Er,Bix UCNPs were proposed. The potential of the BaYF5:Yb,Er,Bix UCNPs as contrast agents for computerized tomography (CT) imaging was successfully demonstrated. An obvious accumulation of BaYF5:Yb,Er,Bix in tumor sites was achieved because of high passive targeting by the enhanced permeability and retention effect and relatively low uptake by a reticuloendothelial system such as liver and spleen. This work paves a new route for the design of luminescence-enhanced UNCPs as promising bioimaging agents for cancer theranostics.


Asunto(s)
Bismuto/química , Medios de Contraste/síntesis química , Europio/química , Nanopartículas del Metal/química , Iterbio/química , Células A549 , Animales , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Humanos , Luminiscencia , Ratones , Tomografía Computarizada por Rayos X
8.
J Hazard Mater ; 388: 121816, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31843415

RESUMEN

Volatile organic compounds (VOCs) are extremely harmful to the human body and environment, thus it is greatly meaningful and urgent to detect VOCs. In this work, terbium-based metal-organic frameworks (Tb-MOFs) have been prepared successfully via a facile and efficient route. These well-constructed Tb-MOFs architectures exhibit characteristic green emission of Tb3+ ion upon excitation of UV light. It is noteworthy that the Tb-MOFs can act as a convenient and efficient luminescent sensor for VOCs. Especially, the Tb-MOFs displayed high selectivity and superior sensitivity towards the sensing of styrene solution and vapor through fluorescence quenching mechanism. The Tb-MOFs can realize fast detection for styrene vapor with a response time of 30 s. The mechanism of fluorescence quenching of Tb-MOFs induced by styrene was also discussed. More importantly, we have designed a logic gate operation with the combination of the sensor for the intelligent detection of styrene. This developed type of lanthanide luminescent metal-organic frameworks (Ln-MOFs) based on the combination of fluorescence sensor and logic gate has a great application prospect in the detection of VOCs in daily life.

9.
ACS Appl Mater Interfaces ; 9(31): 26184-26190, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28721720

RESUMEN

Ln3+-doped fluoride is a far efficient material for realizing multicolor emission, which plays an important part in full-color displays, biolabeling, and MRI. However, studies on the multicolor tuning properties of Ln3+-doped fluoride are mainly concentrated on a complicated process using three or more dopants, and the principle of energy transfer mechanism is still unclear. Herein, multicolor tunable emission is successfully obtained only by codoping with Tb3+ and Eu3+ ions in ß-NaGdF4 submicrocrystals via a facile hydrothermal route. Our work reveals that various emission colors can be obtained and tuned from red, orange-red, pink, and blue-green to green under single excitation energy via codoping Tb3+ and Eu3+ with rationally changed Eu3+/Tb3+ molar ratio due to the energy transfer between Tb3+ and Eu3+ ions in the ß-NaGdF4 host matrix. Meanwhile, the energy transfer mechanism in ß-NaGdF4: x Eu3+/y Tb3+ (x + y = 5 mol %) submicrocrystals is investigated. Our results evidence the potential of the dopants' distribution density as an effective way for analyzing energy transfer and multicolor-controlled mechanism in other rare earth fluoride luminescence materials. Discussions on the multicolor luminescence under a certain dopant concentration based on single host and wavelength excitation are essential toward the goal of the practical applications in the field of light display systems and optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...