Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 31(11): 1866-1881.e10, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37944493

RESUMEN

The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.


Asunto(s)
COVID-19 , Microbiota , Humanos , Animales , Ratones , Glicoproteína de la Espiga del Coronavirus , Formación de Anticuerpos , Imitación Molecular , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Inmunoglobulina A Secretora , Inmunoglobulina G , Anticuerpos Neutralizantes
2.
Mucosal Immunol ; 15(4): 698-716, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35383266

RESUMEN

Successful treatment of chronic inflammatory diseases integrates both the cessation of inflammation and the induction of adequate tissue repair processes. Strikingly, targeting a single proinflammatory cytokine, tumor necrosis factor (TNF), induces both processes in a relevant cohort of inflammatory bowel disease (IBD) patients. However, the molecular mechanisms underlying intestinal repair following TNF blockade during IBD remain elusive. Using a novel humanized model of experimental colitis, we demonstrate that TNF interfered with the tissue repair program via induction of a soluble natural antagonist of IL-22 (IL-22Ra2; IL-22BP) in the colon and abrogated IL-22/STAT3-mediated mucosal repair during colitis. Furthermore, membrane-bound TNF expressed by T cells perpetuated colonic inflammation, while soluble TNF produced by epithelial cells (IECs) induced IL-22BP expression in colonic dendritic cells (DCs) and dampened IL-22-driven restitution of colonic epithelial functions. Finally, TNF induced IL-22BP expression in human monocyte-derived DCs and levels of IL22-BP correlated with TNF in sera of IBD patients. Thus, our data can explain how anti-TNF therapy induces mucosal healing by increasing IL-22 availability and implicates new therapeutic opportunities for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Disponibilidad Biológica , Colitis/metabolismo , Colon/patología , Humanos , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucinas , Mucosa Intestinal/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-22
3.
Front Med (Lausanne) ; 8: 644333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124086

RESUMEN

The intestinal tract is densely populated by microbiota consisting of various commensal microorganisms that are instrumental for the healthy state of the living organism. Such commensals generate various molecules that can be recognized by the Toll-like receptors of the immune system leading to the inflammation marked by strong upregulation of various proinflammatory cytokines, such as TNF, IL-6, and IL-1ß. To prevent excessive inflammation, a single layer of constantly renewing, highly proliferating epithelial cells (IEC) provides proper segregation of such microorganisms from the body cavities. There are various triggers which facilitate the disturbance of the epithelial barrier which often leads to inflammation. However, the nature and duration of the stress may determine the state of the epithelial cells and their responses to cytokines. Here we discuss the role of the microbiota-TLR-cytokine axis in the maintenance of the epithelial tissue integrity. In particular, we highlight discrepancies in the function of TLR and cytokines in IEC barrier during acute or chronic inflammation and we suggest that intervention strategies should be applied based on the type of inflammation.

4.
Nat Commun ; 12(1): 1961, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785765

RESUMEN

The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-ß, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-ß. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-ß, and is distracted from itself.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Interleucinas/inmunología , Masculino , Persona de Mediana Edad , Células Plasmáticas/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
Eur J Immunol ; 50(6): 783-794, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32065660

RESUMEN

In humans and mice, mucosal immune responses are dominated by IgA antibodies and the cytokine TGF-ß, suppressing unwanted immune reactions but also targeting Ig class switching to IgA. It had been suggested that eosinophils promote the generation and maintenance of mucosal IgA-expressing plasma cells. Here, we demonstrate that not eosinophils, but specific bacteria determine mucosal IgA production. Co-housing of eosinophil-deficient mice with mice having high intestinal IgA levels, as well as the intentional microbiota transfer induces TGF-ß expression in intestinal T follicular helper cells, thereby promoting IgA class switching in Peyer's patches, enhancing IgA+ plasma cell numbers in the small intestinal lamina propria and levels of mucosal IgA. We show that bacteria highly enriched for the genus Anaeroplasma are sufficient to induce these changes and enhance IgA levels when adoptively transferred. Thus, specific members of the intestinal microbiota and not the microbiota as such regulate gut homeostasis, by promoting the expression of immune-regulatory TGF-ß and of mucosal IgA.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Mucosa Intestinal , Ganglios Linfáticos Agregados , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/microbiología , Tenericutes/inmunología
6.
J Clin Invest ; 128(8): 3535-3545, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771684

RESUMEN

Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation-inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, P. aeruginosa-binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitute. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy.


Asunto(s)
Antibacterianos/farmacología , Deficiencia de IgA/tratamiento farmacológico , Inmunoglobulina A/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/inmunología , Animales , Humanos , Enfermedad Iatrogénica , Deficiencia de IgA/genética , Deficiencia de IgA/inmunología , Deficiencia de IgA/patología , Ratones , Ratones Noqueados , Neumonía Bacteriana/genética , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...