Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 37: 101648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38314145

RESUMEN

Coelogyne suaveolens has been used as a traditional medicine for many years, and its potential as a natural source of antibacterial agents is of great interest. This investigation aimed to identify the bioactive compounds in the plant extract and assess their antibacterial properties. To achieve this, we identified the bioactive compounds using Gas chromatography mass spectrometry (GCMS) analysis on the extract's ethyl acetate fraction and used the disc diffusion method to determine the antibacterial effect. Additionally, molecular docking were performed to predict the binding affinities of selected phytochemicals against specific proteins in order to identify the root cause of bacterial inhibition. Our results revealed that the extract exhibited significant antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, which are common and problematic pathogens. Furthermore, molecular docking studies identified eight best-selected compounds, of which {androstan-17-one, oxime, (5.alpha.)-}, diethofencarb, tetraconazole, {3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran}, and geranyl acetate showed a significant binding affinity with best binding interaction with the target enzymes. This suggests that binding to these specific proteins might lead to the mechanism of action of the evaluated antibacterial action. In conclusion, the present study contributes to the growing body of knowledge on natural antimicrobial agents and could have significant implications for the development of new and effective antibacterial agents.

2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139818

RESUMEN

Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-ß-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.

3.
Plants (Basel) ; 10(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34961160

RESUMEN

Psychotria malayana Jack belongs to the Rubiacea and is widespread in Southeast Asian countries. It is traditionally used to treat diabetes. Despite its potential medicinal use, scientific proof of this pharmacological action and the toxic effect of this plant are still lacking. Hence, this study aimed to investigate the in vitro antidiabetic and antioxidant activities, toxicity, and preliminary phytochemical screening of P. malayana leaf extracts by gas chromatography-mass spectrometry (GC-MS) after derivatization. The antidiabetic activities of different extracts of this plant were investigated through alpha-glucosidase inhibitory (AGI) and 2-NBDG glucose uptake using 3T3-L1 cell line assays, while the antioxidant activity was evaluated using DPPH and FRAP assays. Its toxicological effect was investigated using the zebrafish embryo/larvae (Danio rerio) model. The mortality, hatchability, tail-detachment, yolk size, eye size, beat per minute (BPM), and body length were taken into account to observe the teratogenicity in all zebrafish embryos exposed to methanol extract. The LC50 was determined using probit analysis. The methanol extract showed the AGI activity (IC50 = 2.71 ± 0.11 µg/mL), insulin-sensitizing activity (at a concentration of 5 µg/mL), and potent antioxidant activities (IC50 = 10.85 µg/mL and 72.53 mg AAE/g for DPPH and FRAP activity, respectively). Similarly, the water extract exhibited AGI activity (IC50 = 6.75 µg/mL), insulin-sensitizing activity at the concentration of 10 µg/mL, and antioxidant activities (IC50 = 27.12 and 33.71 µg/mL for DPPH and FRAP activity, respectively). The methanol and water extracts exhibited the LC50 value higher than their therapeutic concentration, i.e., 37.50 and 252.45 µg/mL, respectively. These results indicate that both water and methanol extracts are safe and potentially an antidiabetic agent, but the former is preferable since its therapeutic index (LC50/therapeutic concentration) is much higher than for methanol extracts. Analysis using GC-MS on derivatized methanol and water extracts of P. malayana leaves detected partial information on some constituents including palmitic acid, 1,3,5-benzenetriol, 1-monopalmitin, beta-tocopherol, 24-epicampesterol, alpha-tocopherol, and stigmast-5-ene, that could be a potential target to further investigate the antidiabetic properties of the plant. Nevertheless, isolation and identification of the bioactive compounds are required to confirm their antidiabetic activity and toxicity.

4.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34681203

RESUMEN

Psychotria malayana Jack leaf, known in Indonesia as "daun salung", is traditionally used for the treatment of diabetes and other diseases. Despite its potential, the phytochemical study related to its anti-diabetic activity is still lacking. Thus, this study aimed to identify putative inhibitors of α-glucosidase, a prominent enzyme contributing to diabetes type 2 in P. malayana leaf extract using gas chromatography-mass spectrometry (GC-MS)- and nuclear magnetic resonance (NMR)-based metabolomics, and to investigate the molecular interaction between those inhibitors and the enzyme through in silico approach. Twenty samples were extracted with different solvent ratios of methanol-water (0, 25, 50, 75, and 100% v/v). All extracts were tested on the alpha-glucosidase inhibition (AGI) assay and analyzed using GC-MS and NMR. Multivariate data analysis through a partial least square (PLS) and orthogonal partial square (OPLS) models were developed in order to correlate the metabolite profile and the bioactivity leading to the annotation of the putative bioactive compounds in the plant extracts. A total of ten putative bioactive compounds were identified and some of them reported in this plant for the first time, namely 1,3,5-benzenetriol (1); palmitic acid (2); cholesta-7,9(11)-diene-3-ol (3); 1-monopalmitin (4); ß-tocopherol (5); α-tocopherol (6); 24-epicampesterol (7); stigmast-5-ene (8); 4-hydroxyphenylpyruvic acid (10); and glutamine (11). For the evaluation of the potential binding modes between the inhibitors and protein, the in silico study via molecular docking was performed where the crystal structure of Saccharomyces cerevisiae isomaltase (PDB code: 3A4A) was used. Ten amino acid residues, namely ASP352, HIE351, GLN182, ARG442, ASH215, SER311, ARG213, GLH277, GLN279, and PRO312 established hydrogen bond in the docked complex, as well as hydrophobic interaction of other amino acid residues with the putative compounds. The α-glucosidase inhibitors showed moderate to high binding affinities (-5.5 to -9.4 kcal/mol) towards the active site of the enzymatic protein, where compounds 3, 5, and 8 showed higher binding affinity compared to both quercetin and control ligand.

5.
J Adv Vet Anim Res ; 8(4): 540-556, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35106293

RESUMEN

OBJECTIVE: This research aims to study the target specificity of selective bioactive compounds in complexing with the human angiotensin-converting enzyme (hACE2) receptor to impede the severe acute respiratory syndrome coronavirus 2 influx mechanism resulting in cardiac injury and depending on the receptor's active site properties and quantum tunneling. MATERIALS AND METHODS: A library of 120 phytochemical ligands was prepared, from which 5 were selected considering their absorption, distribution, metabolism, and excretion (ADMET) and quantitative structure-activity relationship (QSAR) profiles. The protein active sites and belonging quantum tunnels were defined to conduct supramolecular docking of the aforementioned ligands. The hydrogen bond formation and hydrophobic interactions between the ligand-receptor complexes were studied following the molecular docking steps. A comprehensive molecular dynamic simulation (MDS) was conducted for each of the ligand-receptor complexes to figure out the values - root mean square deviation (RMSD) (Å), root mean square fluctuation (RMSF) (Å), H-bonds, Cα, solvent accessible surface area (SASA) (Å2), molecular surface area (MolSA) (Å2), Rg (nm), and polar surface area (PSA) (Å). Finally, computational programming and algorithms were used to interpret the dynamic simulation outputs into their graphical quantitative forms. RESULTS: ADMET and QSAR profiles revealed that the most active candidates from the library to be used were apigenin, isovitexin, piperolactam A, and quercetin as test ligands, whereas serpentine as the control. Based on the binding affinities of supramolecular docking and the parameters of molecular dynamic simulation, the strength of the test ligands can be classified as isovitexin > quercetin > piperolactam A > apigenin when complexed with the hACE2 receptor. Surprisingly, serpentine showed lower affinity (-8.6 kcal/mol) than that of isovitexin (-9.9 kcal/mol) and quercetin (-8.9 kcal/mol). The MDS analysis revealed all ligands except isovitexin having a value lower than 2.5 Ǻ. All the test ligands exhibited acceptable fluctuation ranges of RMSD (Å), RMSF (Å), H-bonds, Cα, SASA (Å2), MolSA (Å2), Rg (nm), and PSA (Å) values. CONCLUSION: Considering each of the parameters of molecular optimization, docking, and dynamic simulation interventions, all of the test ligands can be suggested as potential targeted drugs in blocking the hACE2 receptor.

6.
Molecules ; 25(24)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322801

RESUMEN

Psychotria malayana Jack has traditionally been used to treat diabetes. Despite its potential, the scientific proof in relation to this plant is still lacking. Thus, the present study aimed to investigate the α-glucosidase inhibitors in P.malayana leaf extracts using a metabolomics approach and to elucidate the ligand-protein interactions through in silico techniques. The plant leaves were extracted with methanol and water at five various ratios (100, 75, 50, 25 and 0% v/v; water-methanol). Each extract was tested for α-glucosidase inhibition, followed by analysis using liquid chromatography tandem to mass spectrometry. The data were further subjected to multivariate data analysis by means of an orthogonal partial least square in order to correlate the chemical profile and the bioactivity. The loading plots revealed that the m/z signals correspond to the activity of α-glucosidase inhibitors, which led to the identification of three putative bioactive compounds, namely 5'-hydroxymethyl-1'-(1, 2, 3, 9-tetrahydro-pyrrolo (2, 1-b) quinazolin-1-yl)-heptan-1'-one (1), α-terpinyl-ß-glucoside (2), and machaeridiol-A (3). Molecular docking of the identified inhibitors was performed using Auto Dock Vina software against the crystal structure of Saccharomyces cerevisiae isomaltase (Protein Data Bank code: 3A4A). Four hydrogen bonds were detected in the docked complex, involving several residues, namely ASP352, ARG213, ARG442, GLU277, GLN279, HIE280, and GLU411. Compound 1, 2, and 3 showed binding affinity values of -8.3, -7.6, and -10.0 kcal/mol, respectively, which indicate the good binding ability of the compounds towards the enzyme when compared to that of quercetin, a known α-glucosidase inhibitor. The three identified compounds that showed potential binding affinity towards the enzymatic protein in molecular docking interactions could be the bioactive compounds associated with the traditional use of this plant.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Extractos Vegetales/farmacología , Psychotria/química , alfa-Glucosidasas/metabolismo , Simulación por Computador , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Metabolómica , Simulación del Acoplamiento Molecular , Estructura Molecular , Análisis Multivariante , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química
7.
Molecules ; 25(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932994

RESUMEN

The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as "meroyan sakat/salung". A rapid analytical technique to facilitate the evaluation of the P. malayana leaves' quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 µg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant's quality control.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores de Glicósido Hidrolasas/química , Extractos Vegetales/química , Psychotria/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Concentración 50 Inhibidora , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Hojas de la Planta/química , Solventes , alfa-Glucosidasas
8.
BMC Complement Altern Med ; 16(1): 398, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769218

RESUMEN

BACKGROUND: This plant is very popular ingredient of local made drinks during hot summer. After drinking this drink people feels fresh, relaxed and can enjoy sound sleep. Present study was aimed to assess the sedative properties of a plant Sterculia villosa leaves. Therefore, we tried to find out the methanolic extract from the leaves of Sterculia villosa leaves having any sedative activity or not. METHODS: The extract were subjected to various in vivo methods like hole cross test, open field test, elevated plus-maze (EPM) test, thiopental sodium induced sleeping time test. Diazepam was used as the standard drug. RESULTS: From the study, it is clear that the extract has excellent CNS depressant activity by reducing locomotors activity of mice in every cases of hole cross test, open field test, elevated plus-maze (EPM) test compared to the standard diazepam. In addition, the extract prolong the sleeping time (230 min) with quick onset of action (9 min) in contrast to the standard and control group. CONCLUSIONS: From the present study it can be conclude that the extract posses significant a sedative property that may lead to new drug development and further investigation is necessary to understand the underlying mechanisms and to isolate the active principles.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Sterculia/química , Animales , Hipnóticos y Sedantes/química , Locomoción/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Metanol , Ratones , Extractos Vegetales/química
9.
Saudi Pharm J ; 22(4): 343-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25161379

RESUMEN

In the study, self emulsifying drug delivery system (SEDDS) of gliclazide, a poorly soluble drug, was developed and evaluated by in-vitro, ex-vivo and in-vivo techniques. Oil and surfactant were screened out according to their solubilizing capacity. Among the tested components Transcutol HP and Tween-80 showed good solubilizing capacity. These two components were used in different ratios to prepare gliclazide SEDDS. The SEDDS formulations were transparent and clear. Droplet size of the emulsion was determined by Laser Diffraction Technology of Malvern. Formulation F1 containing 1:1 (m/m) mixture of Transcutol HP/Tween-80 showed minimum mean droplet size (50.959 µm). In-vitro drug release from F1 was higher (99% within 20 min) than other formulations. The developed SEDDS was also evaluated for ex-vivo permeability profile by using chicken intestinal sac. Formulation F1 showed optimal drug diffusion. In-vivo performance of SEDDS was evaluated in albino mice using plasma glucose level as a pharmacodynamic marker parameter. The test formulation (F1) showed significant reduction in plasma glucose level, after oral administration. So SEDDS may be an alternative technique for the oral administration of gliclazide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...