Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3883, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414770

RESUMEN

Despite remarkable progress in the development of halide perovskite materials and devices, their integration into nanoscale optoelectronics has been hindered by a lack of control over nanoscale patterning. Owing to their tendency to degrade rapidly, perovskites suffer from chemical incompatibility with conventional lithographic processes. Here, we present an alternative, bottom-up approach for precise and scalable formation of perovskite nanocrystal arrays with deterministic control over size, number, and position. In our approach, localized growth and positioning is guided using topographical templates of controlled surface wettability through which nanoscale forces are engineered to achieve sub-lithographic resolutions. With this technique, we demonstrate deterministic arrays of CsPbBr3 nanocrystals with tunable dimensions down to <50 nm and positional accuracy <50 nm. Versatile, scalable, and compatible with device integration processes, we then use our technique to demonstrate arrays of nanoscale light-emitting diodes, highlighting the new opportunities that this platform offers for perovskites' integration into on-chip nanodevices.


Asunto(s)
Compuestos de Calcio , Nanopartículas , Óxidos , Impresión
2.
Nat Biotechnol ; 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349522

RESUMEN

Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.

3.
Sci Robot ; 8(76): eadf4278, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921017

RESUMEN

Insects maintain remarkable agility after incurring severe injuries or wounds. Although robots driven by rigid actuators have demonstrated agile locomotion and manipulation, most of them lack animal-like robustness against unexpected damage. Dielectric elastomer actuators (DEAs) are a class of muscle-like soft transducers that have enabled nimble aerial, terrestrial, and aquatic robotic locomotion comparable to that of rigid actuators. However, unlike muscles, DEAs suffer local dielectric breakdowns that often cause global device failure. These local defects severely limit DEA performance, lifetime, and size scalability. We developed DEAs that can endure more than 100 punctures while maintaining high bandwidth (>400 hertz) and power density (>700 watt per kilogram)-sufficient for supporting energetically expensive locomotion such as flight. We fabricated electroluminescent DEAs for visualizing electrode connectivity under actuator damage. When the DEA suffered severe dielectric breakdowns that caused device failure, we demonstrated a laser-assisted repair method for isolating the critical defects and recovering performance. These results culminate in an aerial robot that can endure critical actuator and wing damage while maintaining similar accuracy in hovering flight. Our work highlights that soft robotic systems can embody animal-like agility and resilience-a critical biomimetic capability for future robots to interact with challenging environments.

4.
Sci Adv ; 8(43): eabq4869, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288303

RESUMEN

Deterministic, pristine, and scalable integration of individual nanoparticles onto arbitrary surfaces is an ongoing challenge, yet essential for harnessing their unique properties for functional nanoscale devices. To address this challenge, we present a versatile technique where spatially arranged nanoparticles assembled in a topographical template are printed onto diverse surfaces, through a single contact-and-release step, with >95% transfer yield and <50-nanometer placement accuracy. Through engineering of interfacial interactions, our approach uniquely promotes high-yield transfer of individual particles without needing solvents, surface treatments, and polymer sacrificial layers, which are conventionally inevitable. By avoiding these mediation steps, surfaces can remain damage and contamination free and accessible to integrate into functional structures. We demonstrate this in a particle-on-mirror model system, where >2000 precisely defined nanocavities display a consistent plasmonic response with minimized interstructure variability. Through fabricating arrays of emitter-coupled nanocavities, we further highlight the integration opportunities offered by our contact printing.

5.
Nano Lett ; 22(20): 8258-8265, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36252238

RESUMEN

The absence of a versatile, scalable, and defect-free bottom-up assembly of nanoparticles with high precision has been a longstanding roadblock facing the large-scale integration of diverse nanoparticle-based devices. To circumvent this roadblock, we present a self-limiting dielectrophoretic approach to precisely align nanoparticles onto an array of electrodes over a large area, assisted by lithographically defined capacitors in series with the electrodes. We have experimentally verified that the on-chip capacitor can reduce the probability of trapping multiple particles at a given site, as the electric field is greatly weakened after the first nanoparticle bridges the electrodes. A 70% yield of single-nanowire assembly has been achieved, and key factors limiting the current yield are discussed. The yield is expected to further increase by improving the nanoparticle-electrode contact and reducing the capillary force during the drying process. We also demonstrate the versatility of this approach for scalable and site-selective alignment of various nanoparticles.


Asunto(s)
Nanopartículas , Nanocables , Electrodos
6.
Adv Mater ; 34(7): e2106757, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839551

RESUMEN

Dielectric elastomer actuators (DEAs) are a special class of artificial muscles that have been used to construct animal-like soft robotic systems. However, compared with state-of-the-art rigid actuators such as piezoelectric bimorphs and electromagnetic motors, most DEAs require higher driving voltages, and their power density and lifetime remain substantially lower. These limitations pose significant challenges for developing agile and powered autonomous soft robots. Here, a low-voltage, high-endurance, and power-dense DEA based on novel multiple-layering techniques and electrode-material optimization, is reported. When operated at 400 Hz, the 143 mg DEA generates forces of 0.36 N and displacements of 1.15 mm. This DEA is incorporated into an aerial robot to demonstrate high performance. The robot achieves a high lift-to-weight ratio of 3.7, a low hovering voltage of 500 V, and a long lifetime that exceeds 2 million actuation cycles. With 20 s of hovering time, and position and attitude error smaller than 2.5 cm and 2°, respectively, the robot demonstrates the longest and best-performing flight among existing sub-gram aerial robots. This important milestone demonstrates that soft robots can outperform their state-of-the-art rigid counterparts, and it provides an important step toward realizing power autonomy in soft robotic flights.

7.
Nano Lett ; 21(24): 10244-10251, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34874728

RESUMEN

The use of molecules as active components to build nanometer-scale devices inspires emerging device concepts that employ the intrinsic functionality of molecules to address longstanding challenges facing nanoelectronics. Using molecules as controllable-length nanosprings, here we report the design and operation of a nanoelectromechanical (NEM) switch which overcomes the typical challenges of high actuation voltages and slow switching speeds for previous NEM technologies. Our NEM switches are hierarchically assembled using a molecular spacer layer sandwiched between atomically smooth electrodes, which defines a nanometer-scale electrode gap and can be electrostatically compressed to repeatedly modulate the tunneling current. The molecular layer and the top electrode structure serve as two degrees of design freedom with which to independently tailor static and dynamic device characteristics, enabling simultaneous low turn-on voltages (sub-3 V) and short switching delays (2 ns). This molecular platform with inherent nanoscale modularity provides a versatile strategy for engineering diverse high-performance and energy-efficient electromechanical devices.


Asunto(s)
Electrodos
8.
Science ; 372(6543): 729-733, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33986178

RESUMEN

Despite persistent and extensive observations of crystals with chiral shapes, the mechanisms underlying their formation are not well understood. Although past studies suggest that chiral shapes can form because of crystallization in the presence of chiral additives, or because of an intrinsic tendency that stems from the crystal structure, there are many cases in which these explanations are not suitable or have not been tested. Here, an investigation of model tellurium nanocrystals provides insights into the chain of chirality transfer between crystal structure and shape. We show that this transfer is mediated by screw dislocations, and shape chirality is not an outcome of the chiral crystal structure or ligands.

9.
Nano Lett ; 21(4): 1606-1612, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33534584

RESUMEN

Molecules can serve as ultimate building blocks for extreme nanoscale devices. This requires their precise integration into functional heterojunctions, most commonly in the form of metal-molecule-metal architectures. Structural damage and nonuniformities caused by current fabrication techniques, however, limit their effective incorporation. Here, we present a hybrid fabrication approach enabling uniform and active molecular junctions. A template-stripping technique is developed to form electrodes with sub-nanometer smooth surfaces. Combined with dielectrophoretic trapping of colloidal nanorods, uniform sub-5 nm junctions are achieved. Uniquely, in our design, the top contact is mechanically free to move under an applied stimulus. Using this, we investigate the electromechanical tuning of the junction and its tunneling conduction. Here, the molecules help control sub-nanometer mechanical modulation, which is conventionally challenging due to instabilities caused by surface adhesive forces. Our versatile approach provides a platform to develop and study active molecular junctions for emerging applications in electronics, plasmonics, and electromechanical devices.

10.
Nano Lett ; 20(5): 3178-3184, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32353239

RESUMEN

Active fibers with electro-optic functionalities are promising building blocks for the emerging and rapidly growing field of fiber and textile electronics. Yet, there remains significant challenges that require improved understanding of the principles of active fiber assembly to enable the development of fiber-shaped devices characterized by having a small diameter, being lightweight, and having high mechanical strength. To this end, the current frameworks are insufficient, and new designs and fabrication approaches are essential to accommodate this unconventional form factor. Here, we present a first demonstration of a pathway that effectively integrates the foundational components meeting such requirements, with the use of a flexible and robust conductive core carbon nanotube fiber and an organic-inorganic emissive composite layer as the two critical elements. We introduce an active fiber design that can be realized through an all solution-processed approach. We have implemented this technique to demonstrate a three-layered light-emitting fiber with a coaxially coated design.

11.
ACS Nano ; 9(8): 7886-94, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26244821

RESUMEN

Abrupt switching behavior and near-zero leakage current of nanoelectromechanical (NEM) switches are advantageous properties through which NEMs can outperform conventional semiconductor electrical switches. To date, however, typical NEMs structures require high actuation voltages and can prematurely fail through permanent adhesion (defined as stiction) of device components. To overcome these challenges, in the present work we propose a NEM switch, termed a "squitch," which is designed to electromechanically modulate the tunneling current through a nanometer-scale gap defined by an organic molecular film sandwiched between two electrodes. When voltage is applied across the electrodes, the generated electrostatic force compresses the sandwiched molecular layer, thereby reducing the tunneling gap and causing an exponential increase in the current through the device. The presence of the molecular layer avoids direct contact of the electrodes during the switching process. Furthermore, as the layer is compressed, the increasing surface adhesion forces are balanced by the elastic restoring force of the deformed molecules which can promote zero net stiction and recoverable switching. Through numerical analysis, we demonstrate the potential of optimizing squitch design to enable large on-off ratios beyond 6 orders of magnitude with operation in the sub-1 V regime and with nanoseconds switching times. Our preliminary experimental results based on metal-molecule-graphene devices suggest the feasibility of the proposed tunneling switching mechanism. With optimization of device design and material engineering, squitches can give rise to a broad range of low-power electronic applications.

12.
Phys Med Biol ; 58(15): 5215-35, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23851978

RESUMEN

Contrast-enhanced digital mammography (CEDM) can provide improved breast cancer detection and characterization compared to conventional mammography by imaging the effects of tumour angiogenesis. Current small-molecule contrast agents used for CEDM are limited by a short plasma half-life and rapid extravasation into tissue interstitial space. To address these limitations, nanoscale agents that can remain intravascular except at sites of tumour angiogenesis can be used. For CEDM, this agent must be both biocompatible and strongly attenuate mammographic energy x-rays. Nanoscale perfluorooctylbromide (PFOB) droplets have good x-ray attenuation and have been used in patients for other applications. However, the macroscopic scale of x-ray imaging (50-100 µm) is inadequate for direct verification that PFOB droplets localize at sites of breast tumour angiogenesis. For efficient pre-clinical optimization for CEDM, we integrated an optical marker into PFOB droplets for microscopic assessment (≪50 µm). To develop PFOB droplets as a new nanoscale mammographic contrast agent, PFOB droplets were labelled with fluorescent quantum dots (QDs). The droplets had mean diameters of 160 nm, fluoresced at 635 nm and attenuated x-ray spectra at 30.5 keV mean energy with a relative attenuation of 5.6 ± 0.3 Hounsfield units (HU) mg(-1) mL(-1) QD-PFOB. With the agent loaded into tissue phantoms, good correlation between x-ray attenuation and optical fluorescence was found (R(2) = 0.96), confirming co-localization of the QDs with PFOB for quantitative assessment using x-ray or optical methods. Furthermore, the QDs can be removed from the PFOB agent without affecting its x-ray attenuation or structural properties for expedited translation of optimized PFOB droplet formulations into patients.


Asunto(s)
Medios de Contraste/química , Fluorocarburos/química , Mamografía/métodos , Nanoestructuras , Fenómenos Ópticos , Animales , Línea Celular , Hidrocarburos Bromados , Ratones , Fantasmas de Imagen , Rayos X
13.
ACS Nano ; 6(8): 6922-9, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22770391

RESUMEN

A significant challenge in the development of clinically viable siRNA delivery systems is a lack of in vitro-in vivo translatability: many delivery vehicles that are initially promising in cell culture do not retain efficacy in animals. Despite its importance, little information exists on the predictive nature of in vitro methodologies, most likely due to the cost and time associated with generating in vitro-in vivo data sets. Recently, high-throughput techniques have been developed that have allowed the examination of hundreds of lipid nanoparticle formulations for transfection efficiency in multiple experimental systems. The large resulting data set has allowed the development of correlations between in vitro and characterization data and in vivo efficacy for hepatocellular delivery vehicles. Consistency of formulation technique and the type of cell used for in vitro experiments was found to significantly affect correlations, with primary hepatocytes and HeLa cells yielding the most predictive data. Interestingly, in vitro data acquired using HeLa cells were more predictive of in vivo performance than mouse hepatoma Hepa1-6 cells. Of the characterization parameters, only siRNA entrapment efficiency was partially predictive of in vivo silencing potential, while zeta-potential and, surprisingly, nanoparticle size (when <300 nm) as measured by dynamic light scattering were not. These data provide guiding principles in the development of clinically viable siRNA delivery materials and have the potential to reduce experimental costs while improving the translation of materials into animals.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Lípidos/química , Nanocápsulas/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Transfección/métodos , Animales , Línea Celular Tumoral , Silenciador del Gen , Células HeLa , Humanos , Ratones , Nanocápsulas/ultraestructura , Tamaño de la Partícula , ARN Interferente Pequeño/administración & dosificación , Propiedades de Superficie
14.
ACS Appl Mater Interfaces ; 2(8): 2409-12, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20735115

RESUMEN

The present work demonstrates the fabrication and performance of an enzymatic glucose biosensor based on ZnO nanowires (NWs) deposited on a Au-coated polyester (PET) substrate. Electrodeposition of ZnO NWs on the conducting PET substrate was carried out at 70 degrees C in an aqueous electrolyte consisting of zinc nitrate mixed with potassium chloride. Glucose oxidase (GOx) was subsequently immobilized on the as-synthesized ZnO NWs, and the electrocatalytic properties of GOx-immobilized ZnO NWs were evaluated by amperometry. The resulting GOx/ZnO-NWs/Au/PET bioelectrode exhibits excellent electrocatalytic performance with a high sensitivity of 19.5 muA mM(-1) cm(-2), a low Michaelis-Menten constant of 1.57 mM, and a fast response time of <5 s for the amperometric detection of glucose. The present study illustrates the feasibility of realizing light-weight, flexible, high-performance sensing devices using ZnO NWs.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/química , Nanotecnología/métodos , Óxido de Zinc/química , Electroquímica , Glucosa/análisis , Oro , Microscopía Electrónica de Rastreo , Nanocables , Poliésteres , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...