Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499483

RESUMEN

Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.

2.
Nat Struct Mol Biol ; 30(5): 650-660, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081315

RESUMEN

In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF-dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR-RecO subcomplex and the RecFOR-DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA-dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Recombinación Homóloga , Bacterias/metabolismo , ADN de Cadena Simple , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Reparación del ADN
3.
DNA Repair (Amst) ; 85: 102746, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31739207

RESUMEN

Nucleotide excision repair (NER) is a DNA repair pathway present in all domains of life. In bacteria, UvrA protein localizes the DNA lesion, followed by verification by UvrB helicase and excision by UvrC double nuclease. UvrA senses deformations and flexibility of the DNA duplex without precisely localizing the lesion in the damaged strand, an element essential for proper NER. Using a combination of techniques, we elucidate the mechanism of the damage verification step in bacterial NER. UvrA dimer recruits two UvrB molecules to its two sides. Each of the two UvrB molecules clamps a different DNA strand using its ß-hairpin element. Both UvrB molecules then translocate to the lesion, and UvrA dissociates. The UvrB molecule that clamps the damaged strand gets stalled at the lesion to recruit UvrC. This mechanism allows UvrB to verify the DNA damage and identify its precise location triggering subsequent steps in the NER pathway.


Asunto(s)
Bacterias/genética , ADN Helicasas/química , ADN Helicasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Conformación Proteica
4.
J Mol Biol ; 432(2): 324-342, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31628946

RESUMEN

Methylation of genomic DNA can influence the transcription profile of an organism and may generate phenotypic diversity for rapid adaptation in a dynamic environment. M.HpyAXI is a Type III DNA methyltransferase present in Helicobacter pylori and is upregulated at low pH. This enzyme may alter the expression of critical genes to ensure the survival of this pathogen at low pH inside the human stomach. M.HpyAXI methylates the adenine in the target sequence (5'-GCAG-3') and shows maximal activity at pH 5.5. Type III DNA methyltransferases are found to form an inverted dimer in the functional form. We observe that M.HpyAXI forms a nonfunctional dimer at pH 8.0 that is incapable of DNA binding and methylation activity. However, at pH 5.5, two such dimers associate to form a tetramer that now includes two functional dimers that can bind and methylate the target DNA sequence. Overall, we observe that the pH-dependent tetramerization of M.HpyAXI ensures that the enzyme is licensed to act only in the presence of acid stress.


Asunto(s)
Metilación de ADN/genética , Infecciones por Helicobacter/genética , Helicobacter pylori/enzimología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Ácidos/metabolismo , Adenina/química , Adenina/metabolismo , Secuencia de Aminoácidos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Infecciones por Helicobacter/enzimología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Humanos , Concentración de Iones de Hidrógeno , Cinética , Multimerización de Proteína/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Estrés Fisiológico/genética , Especificidad por Sustrato
5.
Nucleic Acids Res ; 47(22): 11681-11690, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31584081

RESUMEN

Structure-selective endonucleases cleave branched DNA substrates. Slx1 is unique among structure-selective nucleases because it can cleave all branched DNA structures at multiple sites near the branch point. The mechanism behind this broad range of activity is unknown. The present study structurally and biochemically investigated fungal Slx1 to define a new protein interface that binds the non-cleaved arm of branched DNAs. The DNA arm bound at this new site was positioned at a sharp angle relative to the arm that was modeled to interact with the active site, implying that Slx1 uses DNA bending to localize the branch point as a flexible discontinuity in DNA. DNA binding at the new interface promoted a disorder-order transition in a region of the protein that was located in the vicinity of the active site, potentially participating in its formation. This appears to be a safety mechanism that ensures that DNA cleavage occurs only when the new interface is occupied by the non-cleaved DNA arm. Models of Slx1 that interacted with various branched DNA substrates were prepared. These models explain the way in which Slx1 cuts DNA toward the 3' end away from the branch point and elucidate the unique ability of Slx1 to cleave various DNA structures.


Asunto(s)
ADN de Hongos/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Catálisis , Cristalografía por Rayos X , Roturas del ADN de Cadena Simple , Reparación del ADN/genética , ADN de Hongos/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Escherichia coli , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Cuaternaria de Proteína , Sordariales/genética , Sordariales/metabolismo
6.
Biochemistry ; 57(20): 2913-2922, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29750515

RESUMEN

The movement of the piggyBac transposon is mediated through its cognate transposase. The piggyBac transposase binds to the terminal repeats present at the ends of the transposon. This is followed by excision of the transposon and release of the nucleoprotein complex. The complex translocates, followed by integration of the transposon at the target site. Here, we show that the RING-finger domain (RFD) present toward the C-terminus of the transposase is vital for dimerization of this enzyme. The deletion of the RFD or the last seven residues of the RFD results in a monomeric protein that binds the terminal end of the transposon with nearly the same affinity as wild type piggyBac transposase. Surprisingly, the monomeric constructs exhibit >2-fold enhancement in the excision activity of the enzyme. Overall, our studies suggest that dimerization attenuates the excision activity of the piggyBac transposase. This attribute of the piggyBac transposase may serve to prevent excessive transposition of the piggyBac transposon that might be catastrophic for the host cell.


Asunto(s)
Elementos Transponibles de ADN/genética , Dominios RING Finger/genética , Transposasas/química , Dimerización , Vectores Genéticos/química , Vectores Genéticos/genética , Mutagénesis Insercional , Transposasas/genética
7.
Nucleic Acids Res ; 46(1): 256-266, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29182773

RESUMEN

The DNA mismatch repair (MMR) pathway removes errors that appear during genome replication. MutS is the primary mismatch sensor and forms an asymmetric dimer that encircles DNA to bend it to scan for mismatches. The mechanism utilized to load DNA into the central tunnel was unknown and the origin of the force required to bend DNA was unclear. We show that, in absence of DNA, MutS forms a symmetric dimer wherein a gap exists between the monomers through which DNA can enter the central tunnel. The comparison with structures of MutS-DNA complexes suggests that the mismatch scanning monomer (Bm) will move by nearly 50 Å to associate with the other monomer (Am). Consequently, the N-terminal domains of both monomers will press onto DNA to bend it. The proposed mechanism of toroid formation evinces that the force required to bend DNA arises primarily due to the movement of Bm and hence, the MutS dimer acts like a pair of pliers to bend DNA. We also shed light on the allosteric mechanism that influences the expulsion of adenosine triphosphate from Am on DNA binding. Overall, this study provides mechanistic insight regarding the primary event in MMR i.e. the assembly of the MutS-DNA complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Disparidad de Par Base , Reparación de la Incompatibilidad de ADN , ADN/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...