Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 62017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28323614

RESUMEN

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3'-phosphoadenosine 5'- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.


Asunto(s)
Ácido Abscísico/metabolismo , Adenosina Difosfato/metabolismo , Arabidopsis/fisiología , Cloroplastos/metabolismo , Germinación , Estomas de Plantas/fisiología , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(31): E4567-76, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432987

RESUMEN

Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde communication pathways ill-defined or incomplete. Here we identify the 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase SAL1 as a previously unidentified and conserved oxidative stress sensor in plant chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular disulfide formation, and glutathionylation, allowing accumulation of its substrate, PAP, a chloroplast stress retrograde signal that regulates expression of plastid redox associated nuclear genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity compared with its yeast ortholog. Our results indicate that in addition to sulfur metabolism, SAL1 orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/metabolismo , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/metabolismo , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Disulfuros/metabolismo , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Glutatión , Oxidación-Reducción , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad por Sustrato
3.
Mol Plant ; 8(1): 68-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25578273

RESUMEN

Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.


Asunto(s)
Carotenoides/metabolismo , Plantas/metabolismo , Plastidios/metabolismo , Hemiterpenos/metabolismo , Compuestos Organofosforados/metabolismo , Xantófilas/metabolismo
4.
Front Plant Sci ; 5: 533, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25374573

RESUMEN

Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

5.
Plant Cell ; 26(6): 2524-2537, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24907342

RESUMEN

In addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana. Unlike other carotenoid-deficient plants, zds/clb5 mutant alleles display profound alterations in leaf morphology and cellular differentiation as well as altered expression of many plastid- and nucleus-encoded genes. The leaf developmental phenotypes and gene expression alterations of zds/clb5/spc1/pde181 plants are rescued by inhibitors or mutations of phytoene desaturase, demonstrating that phytofluene and/or ζ-carotene are substrates for an unidentified signaling molecule. Our work further demonstrates that this signal is an apocarotenoid whose synthesis requires the activity of the carotenoid cleavage dioxygenase CCD4.

6.
Plant Signal Behav ; 9(1): e27898, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24487186

RESUMEN

Cellular auxin homeostasis controls many aspects of plant growth, organogenesis and development. The existence of intracellular auxin transport mediated by endoplasmic reticulum (ER)-localized PIN5, PIN6 and PIN8 proteins is a relatively recent discovery shaping a new era in understanding auxin-mediated growth processes. Here we summarize the importance of PIN6 in mediating intracellular auxin transport during root formation, leaf vein patterning and nectary production. While, it was previously shown that PIN6 was strongly expressed in rosette leaf cell types important in vein formation, here we demonstrate by use a PIN6 promoter-reporter fusion, that PIN6 is also preferentially expressed in the vasculature of the primary root, cotyledons, cauline leaves, floral stem, sepals and the main transmitting tract of the reproductive silique. The strong, vein- specific reporter gene expression patterns enabled by the PIN6 promoter emphasizes that transcriptional control is likely to be a major regulator of PIN6 protein levels, during vasculature formation, and supports the need for ER-localized PIN proteins in selecting specialized cells for vascular function in land plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Desarrollo de la Planta , Haz Vascular de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Membrana/genética , Néctar de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas
7.
PLoS One ; 8(7): e70069, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922907

RESUMEN

Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we analyzed roles of the less characterised Arabidopsis PIN6 auxin transporter. PIN6 is auxin-inducible and is expressed during multiple auxin-regulated developmental processes. Loss of pin6 function interfered with primary root growth and lateral root development. Misexpression of PIN6 affected auxin transport and interfered with auxin homeostasis in other growth processes such as shoot apical dominance, lateral root primordia development, adventitious root formation, root hair outgrowth and root waving. These changes in auxin-regulated growth correlated with a reduction in total auxin transport as well as with an altered activity of DR5-GUS auxin response reporter. Overall, the data indicate that PIN6 regulates auxin homeostasis during plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
8.
Plant Methods ; 8(1): 50, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23249585

RESUMEN

BACKGROUND: Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting) have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. RESULTS: Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87%) grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of newly formed vascular connections, parenchyma tissue and lignin accumulation, supporting the presumed success of the graft union between two sections of the primary inflorescence stem. CONCLUSIONS: We describe a simple and reliable method for grafting sections of an Arabidopsis inflorescence stem. This step-by-step protocol facilitates laboratories without grafting experience to further explore the molecular and chemical signalling which coordinates communications between the shoot and reproductive tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...