Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(21): eadk2149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781326

RESUMEN

Understanding the genetic programs that drive neuronal diversification into classes and subclasses is key to understand nervous system development. All neurons can be classified into two types: commissural and ipsilateral, based on whether their axons cross the midline or not. However, the gene regulatory program underlying this binary division is poorly understood. We identified a pair of basic helix-loop-helix transcription factors, Nhlh1 and Nhlh2, as a global transcriptional mechanism that controls the laterality of all floor plate-crossing commissural axons in mice. Mechanistically, Nhlh1/2 play an essential role in the expression of Robo3, the key guidance molecule for commissural axon projections. This genetic program appears to be evolutionarily conserved in chick. We further discovered that Isl1, primarily expressed in ipsilateral neurons within neural tubes, negatively regulates the Robo3 induction by Nhlh1/2. Our findings elucidate a gene regulatory strategy where a conserved global mechanism intersects with neuron class-specific regulators to control the partitioning of neurons based on axon laterality.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación del Desarrollo de la Expresión Génica , Neuronas , Animales , Neuronas/metabolismo , Neuronas/citología , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Axones/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Embrión de Pollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Redes Reguladoras de Genes
2.
PLoS One ; 18(9): e0285295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733805

RESUMEN

The spinal dorsal horn comprises heterogeneous neuronal populations, that interconnect with one another to form neural circuits modulating various types of sensory information. Decades of evidence has revealed that transcription factors expressed in each neuronal progenitor subclass play pivotal roles in the cell fate specification of spinal dorsal horn neurons. However, the development of subtypes of these neurons is not fully understood in more detail as yet and warrants the investigation of additional transcription factors. In the present study, we examined the involvement of the POU domain-containing transcription factor Brn3a in the development of spinal dorsal horn neurons. Analyses of Brn3a expression in the developing spinal dorsal horn neurons in mice demonstrated that the majority of the Brn3a-lineage neurons ceased Brn3a expression during embryonic stages (Brn3a-transient neurons), whereas a limited population of them continued to express Brn3a at high levels after E18.5 (Brn3a-persistent neurons). Loss of Brn3a disrupted the localization pattern of Brn3a-persistent neurons, indicating a critical role of this transcription factor in the development of these neurons. In contrast, Brn3a overexpression in Brn3a-transient neurons directed their localization in a manner similar to that in Brn3a-persistent neurons. Moreover, Brn3a-overexpressing neurons exhibited increased axonal extension to the ventral and ventrolateral funiculi, where the axonal tracts of Brn3a-persistent neurons reside. These results suggest that Brn3a controls the soma localization and axonal extension patterns of Brn3a-persistent spinal dorsal horn neurons.


Asunto(s)
Neuronas , Células del Asta Posterior , Animales , Ratones , Axones , Diferenciación Celular , Factores de Transcripción/genética
3.
Nat Commun ; 14(1): 4494, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524709

RESUMEN

Heart failure is a leading cause of mortality in developed countries. Cell death is a key player in the development of heart failure. Calcium-independent phospholipase A2ß (iPLA2ß) produces lipid mediators by catalyzing lipids and induces nuclear shrinkage in caspase-independent cell death. Here, we show that lysophosphatidylserine generated by iPLA2ß induces necrotic cardiomyocyte death, as well as contractile dysfunction mediated through its receptor, G protein-coupled receptor 34 (GPR34). Cardiomyocyte-specific iPLA2ß-deficient male mice were subjected to pressure overload. While control mice showed left ventricular systolic dysfunction with necrotic cardiomyocyte death, iPLA2ß-deficient mice preserved cardiac function. Lipidomic analysis revealed a reduction of 18:0 lysophosphatidylserine in iPLA2ß-deficient hearts. Knockdown of Gpr34 attenuated 18:0 lysophosphatidylserine-induced necrosis in neonatal male rat cardiomyocytes, while the ablation of Gpr34 in male mice reduced the development of pressure overload-induced cardiac remodeling. Thus, the iPLA2ß-lysophosphatidylserine-GPR34-necrosis signaling axis plays a detrimental role in the heart in response to pressure overload.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratas , Ratones , Masculino , Animales , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Necrosis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Remodelación Ventricular , Ratones Noqueados
4.
Front Pain Res (Lausanne) ; 3: 979038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570085

RESUMEN

The spinal dorsal horn plays a crucial role in the transmission and processing of somatosensory information. Although spinal neural circuits that process several distinct types of somatic sensations have been studied extensively, those responsible for visceral pain transmission remain poorly understood. In the present study, we analyzed dextran sodium sulfate (DSS)-induced inflammatory bowel disease (IBD) mouse models to characterize the spinal dorsal horn neurons involved in visceral pain transmission. Immunostaining for c-fos, a marker of neuronal activity, demonstrated that numerous c-fos-positive cells were found bilaterally in the lumbosacral spinal dorsal horn, and their distribution was particularly abundant in the shallow dorsal horn. Characterization of these neurons by several molecular markers revealed that the percentage of the Pit1-Oct1-Unc86 domain (POU domain)-containing transcription factor Brn3a-positive neurons among the c-fos-positive neurons in the shallow dorsal horn was 30%-40% in DSS-treated mice, which was significantly higher than that in the somatic pain model mice. We further demonstrated by neuronal tracing that, within the shallow dorsal horn, Brn3a-positive neurons were more highly represented in spino-solitary projection neurons than in spino-parabrachial projection neurons. These results raise the possibility that Brn3a-positive spinal dorsal horn neurons make a large contribution to visceral pain transmission, part of which is mediated through the spino-solitary pathway.

5.
Elife ; 102021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526170

RESUMEN

Heart failure is a major public health problem, and abnormal iron metabolism is common in patients with heart failure. Although iron is necessary for metabolic homeostasis, it induces a programmed necrosis. Iron release from ferritin storage is through nuclear receptor coactivator 4 (NCOA4)-mediated autophagic degradation, known as ferritinophagy. However, the role of ferritinophagy in the stressed heart remains unclear. Deletion of Ncoa4 in mouse hearts reduced left ventricular chamber size and improved cardiac function along with the attenuation of the upregulation of ferritinophagy-mediated ferritin degradation 4 weeks after pressure overload. Free ferrous iron overload and increased lipid peroxidation were suppressed in NCOA4-deficient hearts. A potent inhibitor of lipid peroxidation, ferrostatin-1, significantly mitigated the development of pressure overload-induced dilated cardiomyopathy in wild-type mice. Thus, the activation of ferritinophagy results in the development of heart failure, whereas inhibition of this process protects the heart against hemodynamic stress.


Asunto(s)
Insuficiencia Cardíaca/etiología , Coactivadores de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/metabolismo , Animales , Aorta , Autofagia , Cardiomiopatías/tratamiento farmacológico , Constricción , Ciclohexilaminas/farmacología , Modelos Animales de Enfermedad , Ferritinas/genética , Ferritinas/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Hierro/metabolismo , Peroxidación de Lípido , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenilendiaminas/farmacología
6.
Circulation ; 141(8): 667-677, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31931613

RESUMEN

BACKGROUND: Proinflammatory cytokines play an important role in the pathogenesis of heart failure. The mechanisms responsible for maintaining sterile inflammation within failing hearts remain poorly defined. Although transcriptional control is important for proinflammatory cytokine gene expression, the stability of mRNA also contributes to the kinetics of immune responses. Regnase-1 is an RNase involved in the degradation of a set of proinflammatory cytokine mRNAs in immune cells. The role of Regnase-1 in nonimmune cells such as cardiomyocytes remains to be elucidated. METHODS: To examine the role of proinflammatory cytokine degradation by Regnase-1 in cardiomyocytes, cardiomyocyte-specific Regnase-1-deficient mice were generated. The mice were subjected to pressure overload by means of transverse aortic constriction to induce heart failure. Cardiac remodeling was assessed by echocardiography as well as histological and molecular analyses 4 weeks after operation. Inflammatory cell infiltration was examined by immunostaining. Interleukin-6 signaling was inhibited by administration with its receptor antibody. Overexpression of Regnase-1 in the heart was performed by adeno-associated viral vector-mediated gene transfer. RESULTS: Cardiomyocyte-specific Regnase-1-deficient mice showed no cardiac phenotypes under baseline conditions, but exhibited severe inflammation and dilated cardiomyopathy after 4 weeks of pressure overload compared with control littermates. Four weeks after transverse aortic constriction, the Il6 mRNA level was upregulated, but not other cytokine mRNAs, including tumor necrosis factor-α, in Regnase-1-deficient hearts. Although the Il6 mRNA level increased 1 week after operation in both Regnase-1-deficient and control hearts, it showed no increase in control hearts 4 weeks after operation. Administration of anti-interleukin-6 receptor antibody attenuated the development of inflammation and cardiomyopathy in cardiomyocyte-specific Regnase-1-deficient mice. In severe pressure overloaded wild-type mouse hearts, sustained induction of Il6 mRNA was observed, even though the protein level of Regnase-1 increased. Adeno-associated virus 9-mediated cardiomyocyte-targeted gene delivery of Regnase-1 or administration of anti-interleukin-6 receptor antibody attenuated the development of cardiomyopathy induced by severe pressure overload in wild-type mice. CONCLUSIONS: The degradation of cytokine mRNA by Regnase-1 in cardiomyocytes plays an important role in restraining sterile inflammation in failing hearts and the Regnase-1-mediated pathway might be a therapeutic target to treat patients with heart failure.


Asunto(s)
Inflamación/patología , Interleucina-6/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética , Animales , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Vectores Genéticos/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/prevención & control , Inflamación/prevención & control , Interleucina-6/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-6/inmunología , Ribonucleasas/deficiencia , Ribonucleasas/metabolismo , Regulación hacia Arriba
7.
Biochem Biophys Res Commun ; 515(3): 442-447, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31160091

RESUMEN

In myocardial ischemia/reperfusion injury, the innate immune and subsequent inflammatory responses play a crucial role in the extension of myocardial damage. Toll-like receptor 9 (TLR9) is a critical receptor for recognizing unmethylated CpG motifs that mitochondria contain in their DNA, and induces inflammatory responses. The aim of this study was to elucidate the role of TLR9 in myocardial ischemia/reperfusion injury. Isolated hearts from TLR9-deficient and control wild-type mice were subjected to 35 min of global ischemia, followed by 60 min of reperfusion with Langendorff apparatus. Furthermore, wild-type mouse hearts were infused with DNase I and subjected to ischemia/reperfusion. Ablation of TLR9-mediated signaling pathway attenuates myocardial ischemia/reperfusion injury and inflammatory responses, and digestion of extracellular mitochondrial DNA released from the infarct heart partially improved myocardial ischemia/reperfusion injury with no effect on inflammatory responses. TLR9 could be a therapeutic target to reduce myocardial ischemia/reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Receptor Toll-Like 9/metabolismo , Animales , Citocinas/metabolismo , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Necrosis , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
J Mol Cell Cardiol ; 114: 93-104, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29129702

RESUMEN

Protein quality control in cardiomyocytes is crucial to maintain cellular homeostasis. The accumulation of damaged organelles, such as mitochondria and misfolded proteins in the heart is associated with heart failure. During the process to identify novel mitochondria-specific autophagy (mitophagy) receptors, we found FK506-binding protein 8 (FKBP8), also known as FKBP38, shares similar structural characteristics with a yeast mitophagy receptor, autophagy-related 32 protein. However, knockdown of FKBP8 had no effect on mitophagy in HEK293 cells or H9c2 myocytes. Since the role of FKBP8 in the heart has not been fully elucidated, the aim of this study is to determine the functional role of FKBP8 in the heart. Cardiac-specific FKBP8-deficient (Fkbp8-/-) mice were generated. Fkbp8-/- mice showed no cardiac phenotypes under baseline conditions. The Fkbp8-/- and control wild type littermates (Fkbp8+/+) mice were subjected to pressure overload by means of transverse aortic constriction (TAC). Fkbp8-/- mice showed left ventricular dysfunction and chamber dilatation with lung congestion 1week after TAC. The number of apoptotic cardiomyocytes was dramatically elevated in TAC-operated Fkbp8-/- hearts, accompanied with an increase in protein levels of cleaved caspase-12 and endoplasmic reticulum (ER) stress markers. Caspase-12 inhibition resulted in the attenuation of hydrogen peroxide-induced apoptotic cell death in FKBP8 knockdown H9c2 myocytes. Immunocytological and immunoprecipitation analyses indicate that FKBP8 is localized to the ER and mitochondria in the isolated cardiomyocytes, interacting with heat shock protein 90. Furthermore, there was accumulation of misfolded protein aggregates in FKBP8 knockdown H9c2 myocytes and electron dense deposits in perinuclear region in TAC-operated Fkbp8-/- hearts. The data suggest that FKBP8 plays a protective role against hemodynamic stress in the heart mediated via inhibition of the accumulation of misfolded proteins and ER-associated apoptosis.


Asunto(s)
Apoptosis , Cardiotónicos/metabolismo , Retículo Endoplásmico/metabolismo , Corazón/fisiopatología , Hemodinámica , Estrés Fisiológico , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Aorta/patología , Apoptosis/efectos de los fármacos , Caspasa 12/metabolismo , Constricción Patológica , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Corazón/efectos de los fármacos , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hemodinámica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mitofagia/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Presión , Unión Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal , Estrés Fisiológico/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión a Tacrolimus/deficiencia , Remodelación Ventricular/efectos de los fármacos
9.
Eur J Neurosci ; 46(10): 2608-2619, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28977701

RESUMEN

The dorsal spinal cord, which is essential for somatosensory transmission, comprises a heterogeneous population of neurons with distinct axonal lengths and projection patterns. Although the developmental origin of local-circuit interneurons in the dorsal spinal cord has been well characterized, that of long-range neurons extending axons over a long distance such as supraspinal projection neurons and propriospinal neurons is largely unknown. In this study, we performed birthdate and lineage analyses of these long-range neurons in the mouse dorsal spinal cord. Unilateral injection of a retrograde neuronal tracer, cholera toxin B, into the brain or spinal cord efficiently labeled supraspinal projection neurons localized in Rexed's lamina I and the dorsolateral funiculus (DLF) and long-range propriospinal neurons localized in the DLF, all of which had ipsi- and contralaterally projecting populations. Most of these neurons were born between E9.5 and E10.5, much earlier than in the case of the neurogenesis of local-circuit neurons. Lineage analysis using an Lbx1-Cre mouse line demonstrated that most long-range neurons were derived from Lbx1-positive neuronal progenitors, except in the case of the contralaterally projecting propriospinal neurons. Characterization of their neurotransmitter identity revealed that almost all of the supraspinal projection neurons were excitatory, whereas the long-range propriospinal neurons comprised both excitatory and inhibitory populations. These results suggest that the supraspinal projection neurons were derived from the early-born dI5 progenitor domain and that the long-range propriospinal ones arose from several early-born progenitor domains.


Asunto(s)
Neuronas/fisiología , Médula Espinal/embriología , Animales , Axones/fisiología , Femenino , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Vías Nerviosas/embriología , Células-Madre Neurales , Técnicas de Trazados de Vías Neuroanatómicas
10.
Circ J ; 81(5): 622-628, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28381696

RESUMEN

In most patients with chronic heart failure (HF), levels of circulating cytokines are elevated and the elevated cytokine levels correlate with the severity of HF and prognosis. Various stresses induce subcellular component abnormalities, such as mitochondrial damage. Damaged mitochondria induce accumulation of reactive oxygen species and apoptogenic proteins, and subcellular inflammation. The vicious cycle of subcellular component abnormalities, inflammatory cell infiltration and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in cardiac dysfunction and HF. Quality control mechanisms at both the protein and organelle levels, such as elimination of apoptogenic proteins and damaged mitochondria, maintain cellular homeostasis. An imbalance between protein synthesis and degradation is likely to result in cellular dysfunction and disease. Three major protein degradation systems have been identified, namely the cysteine protease system, autophagy, and the ubiquitin proteasome system. Autophagy was initially believed to be a non-selective process. However, recent studies have described the process of selective mitochondrial autophagy, known as mitophagy. Elimination of damaged mitochondria by autophagy is important for maintenance of cellular homeostasis. DNA and RNA degradation systems also play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and post-transcriptional regulation, respectively. This review discusses some recent advances in understanding the role of sterile inflammation and degradation systems in HF.


Asunto(s)
Daño del ADN , Insuficiencia Cardíaca/patología , Inflamación , Proteolisis , Autofagia , Insuficiencia Cardíaca/metabolismo , Homeostasis/fisiología , Humanos , Mitofagia , Miocitos Cardíacos/patología
11.
Cardiovasc Res ; 113(4): 389-398, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28395010

RESUMEN

Excessive feeding is associated with an increase in the incidence of chronic metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. Metabolic disturbance induces chronic low-grade inflammation in metabolically-important organs, such as the liver and adipose tissue. Many of the inflammatory signalling pathways are directly triggered by nutrients. The pro-inflammatory mediators in adipocytes and macrophages infiltrating adipose tissue promote both local and systemic pro-inflammatory status. Metabolic cardiomyopathy is a chronic metabolic disease characterized by structural and functional alterations and interstitial fibrosis without coronary artery disease or hypertension. In the early stage of metabolic cardiomyopathy, metabolic disturbance is not accompanied by substantial changes in myocardial structure and cardiac function. However, metabolic disturbance induces subcellular low-grade inflammation in the heart, and in turn, subcellular component abnormalities, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and impaired calcium handling, leading to impaired myocardial relaxation. In the advanced stage, the vicious cycle of subcellular component abnormalities, inflammatory cell infiltration, and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in impairment of both diastolic and systolic functions. This review discusses some recent advances in understanding involvement of inflammation in metabolic cardiomyopathy.


Asunto(s)
Cardiomiopatías/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Miocardio/metabolismo , Animales , Autofagia , Cardiomiopatías/inmunología , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Humanos , Inmunidad Innata , Inflamación/inmunología , Inflamación/patología , Inflamación/fisiopatología , Mediadores de Inflamación/inmunología , Miocardio/inmunología , Miocardio/patología , Pronóstico , Transducción de Señal
12.
eNeuro ; 3(5)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27785460

RESUMEN

Maintenance of neuropathic pain caused by peripheral nerve injury crucially depends on the phosphorylation of GluN2B, a subunit of the N-methyl-d-aspartate (NMDA) receptor, at Tyr1472 (Y1472) and subsequent formation of a postsynaptic density (PSD) complex of superficial spinal dorsal horn neurons. Here we took advantage of comparative proteomic analysis based on isobaric stable isotope tags (iTRAQ) between wild-type and knock-in mice with a mutation of Y1472 to Phe of GluN2B (Y1472F-KI) to search for PSD proteins in the spinal dorsal horn that mediate the signaling downstream of phosphorylated Y1472 GluN2B. Among several candidate proteins, we focused on brain-enriched guanylate kinase-associated protein (BEGAIN), which was specifically up-regulated in wild-type mice after spared nerve injury (SNI). Immunohistochemical analysis using the generated antibody demonstrated that BEGAIN was highly localized at the synapse of inner lamina II in the spinal dorsal horn and that its expression was up-regulated after SNI in wild-type, but not in Y1472F-KI, mice. In addition, alteration of the kinetics of evoked excitatory postsynaptic currents for NMDA but not those for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in spinal lamina II was demonstrated by BEGAIN deletion. We demonstrated that mechanical allodynia, a condition of abnormal pain induced by innocuous stimuli, in the SNI model was significantly attenuated in BEGAIN-deficient mice. However, there was no significant difference between naive wild-type and BEGAIN-knockout mice in terms of physiological threshold for mechanical stimuli. These results suggest that BEGAIN was involved in pathological pain transmission through NMDA receptor activation by the phosphorylation of GluN2B at Y1472 in spinal inner lamina II.


Asunto(s)
Dolor Crónico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/etiología , Dolor Crónico/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Expresión Génica , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/patología , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/patología , Proteoma , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Asociadas a SAP90-PSD95 , Médula Espinal/metabolismo , Médula Espinal/patología , Tacto
13.
Am J Physiol Heart Circ Physiol ; 311(6): H1485-H1497, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769998

RESUMEN

We have reported that the Toll-like receptor 9 (TLR9) signaling pathway plays an important role in the development of pressure overload-induced inflammatory responses and heart failure. However, its role in cardiac remodeling after myocardial infarction has not been elucidated. TLR9-deficient and control C57Bl/6 wild-type mice were subjected to left coronary artery ligation. The survival rate 14 days postoperation was significantly lower in TLR9-deficient mice than that in wild-type mice with evidence of cardiac rupture in all dead mice. Cardiac magnetic resonance imaging showed no difference in infarct size and left ventricular wall thickness and function between TLR9-deficient and wild-type mice. There were no differences in the number of infiltrating inflammatory cells and the levels of inflammatory cytokine mRNA in infarct hearts between TLR9-deficient and wild-type mice. The number of α-smooth muscle actin (αSMA)-positive myofibroblasts and αSMA/Ki67-double-positive proliferative myofibroblasts was increased in the infarct and border areas in infarct hearts compared with those in sham-operated hearts in wild-type mice, but not in TLR9-deficient mice. The class B CpG oligonucleotide increased the phosphorylation level of NF-κB and the number of αSMA-positive and αSMA/Ki67-double-positive cells and these increases were attenuated by BAY1-7082, an NF-κB inhibitor, in cardiac fibroblasts isolated from wild-type hearts. The CpG oligonucleotide showed no effect on NF-κB activation or the number of αSMA-positive and αSMA/Ki67-double-positive cells in cardiac fibroblasts from TLR9-deficient hearts. Although the TLR9 signaling pathway is not involved in the acute inflammatory response in infarct hearts, it ameliorates cardiac rupture possibly by promoting proliferation and differentiation of cardiac fibroblasts.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Fibroblastos/citología , Rotura Cardíaca Posinfarto/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptor Toll-Like 9/genética , Actinas/metabolismo , Animales , Western Blotting , Recuento de Células , Vasos Coronarios/cirugía , Citocinas/genética , Rotura Cardíaca Posinfarto/etiología , Rotura Cardíaca Posinfarto/inmunología , Rotura Cardíaca Posinfarto/mortalidad , Inflamación , Antígeno Ki-67/metabolismo , Ligadura , Magnetoterapia , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocardio/patología , Miofibroblastos/citología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
14.
Circ Res ; 118(10): 1577-92, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27174951

RESUMEN

Aging-related cardiovascular diseases are a rapidly increasing problem worldwide. Cardiac aging demonstrates progressive decline of diastolic dysfunction of ventricle and increase in ventricular and arterial stiffness accompanied by increased fibrosis stimulated by angiotensin II and proinflammatory cytokines. Reactive oxygen species and multiple signaling pathways on cellular senescence play major roles in the process. Aging is also associated with an alteration in steady state of macromolecular dynamics including a dysfunction of protein synthesis and degradation. Currently, impaired macromolecular degradation is considered to be closely related to enhanced inflammation and be involved in the process and mechanism of cardiac aging. Herein, we review the role and mechanisms of the degradation system of intracellular macromolecules in the process and pathophysiology of cardiovascular aging.


Asunto(s)
Envejecimiento/metabolismo , Miocardio/metabolismo , Proteolisis , Envejecimiento/patología , Animales , Autofagia , Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo
16.
J Mol Cell Cardiol ; 95: 50-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27021519

RESUMEN

Mitochondria are essential organelles that supply ATP through oxidative phosphorylation to maintain cellular homeostasis. Extrinsic or intrinsic agents can impair mitochondria, and these impaired mitochondria can generate reactive oxygen species (ROS) as byproducts, inducing cellular damage and cell death. The quality control of mitochondria is essential for the maintenance of normal cellular functions, particularly in cardiomyocytes, because they are terminally differentiated. Accumulation of damaged mitochondria is characteristic of various diseases, including heart failure, neurodegenerative disease, and aging-related diseases. Mitochondria are generally degraded through autophagy, an intracellular degradation system that is conserved from yeast to mammals. Autophagy is thought to be a nonselective degradation process in which cytoplasmic proteins and organelles are engulfed by isolation membrane to form autophagosomes in eukaryotic cells. However, recent studies have described the process of selective autophagy, which targets specific proteins or organelles such as mitochondria. Mitochondria-specific autophagy is called mitophagy. Dysregulation of mitophagy is implicated in the development of chronic diseases including neurodegenerative diseases, metabolic diseases, and heart failure. In this review, we discuss recent progress in research on mitophagy receptors.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Mitofagia , Miocardio/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
PLoS One ; 11(3): e0152628, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27023784

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts.


Asunto(s)
Autofagia , Regulación hacia Abajo , Corazón/fisiopatología , Mitocondrias Cardíacas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Autofagia/efectos de los fármacos , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Corazón/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Complejos Multiproteicos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trehalosa/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Regulación hacia Arriba/efectos de los fármacos
18.
J Mol Cell Cardiol ; 95: 11-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26678624

RESUMEN

Despite progress in cardiovascular research and evidence-based therapies, heart failure is a leading cause of morbidity and mortality in industrialized countries. Cardiac remodeling is a chronic maladaptive process, characterized by progressive ventricular dilatation, cardiac hypertrophy, fibrosis, and deterioration of cardiac performance, and arises from interactions between adaptive modifications of cardiomyocytes and negative aspects of adaptation such as cardiomyocyte death and fibrosis. Autophagy has evolved as a conserved process for bulk degradation and recycling of cytoplasmic components, such as long-lived proteins and organelles. Accumulating evidence demonstrates that autophagy plays an essential role in cardiac remodeling to maintain cardiac function and cellular homeostasis in the heart. This review discusses some recent advances in understanding the role of autophagy during cardiac remodeling. This article is part of a Special Issue entitled: Autophagy in the Heart.


Asunto(s)
Autofagia , Miocardio/metabolismo , Miocardio/patología , Remodelación Ventricular , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Progresión de la Enfermedad , Corazón/fisiología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hemodinámica , Humanos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología
19.
Nat Commun ; 6: 7527, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26146385

RESUMEN

Damaged mitochondria are removed by mitophagy. Although Atg32 is essential for mitophagy in yeast, no Atg32 homologue has been identified in mammalian cells. Here, we show that Bcl-2-like protein 13 (Bcl2-L-13) induces mitochondrial fragmentation and mitophagy in mammalian cells. First, we hypothesized that unidentified mammalian mitophagy receptors would share molecular features of Atg32. By screening the public protein database for Atg32 homologues, we identify Bcl2-L-13. Bcl2-L-13 binds to LC3 through the WXXI motif and induces mitochondrial fragmentation and mitophagy in HEK293 cells. In Bcl2-L-13, the BH domains are important for the fragmentation, while the WXXI motif facilitates mitophagy. Bcl2-L-13 induces mitochondrial fragmentation in the absence of Drp1, while it induces mitophagy in Parkin-deficient cells. Knockdown of Bcl2-L-13 attenuates mitochondrial damage-induced fragmentation and mitophagy. Bcl2-L-13 induces mitophagy in Atg32-deficient yeast cells. Induction and/or phosphorylation of Bcl2-L-13 may regulate its activity. Our findings offer insights into mitochondrial quality control in mammalian cells.


Asunto(s)
Mitocondrias/fisiología , Mitofagia/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Dinaminas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica/fisiología , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
20.
J Mol Cell Cardiol ; 84: 212-22, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25981331

RESUMEN

Heart failure is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or the ejection of blood, and is a leading cause of morbidity and mortality in industrialized countries. The mechanisms underlying the development of heart failure are multiple, complex and not well understood. Cardiac mass and its homeostasis are maintained by the balance between protein synthesis and degradation, and an imbalance is likely to result in cellular dysfunction and disease. The protein degradation systems are the principle mechanisms for maintaining cellular homeostasis via protein quality control. Three major protein degradation systems have been identified, namely the calpain system, autophagy, and the ubiquitin proteasome system. Proinflammatory mediators involve the development and progression of heart failure. DNA and RNA degradation systems play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and posttranscriptional regulation, respectively. This review discusses some recent advances in understanding the role of these degradation systems in heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Ácidos Nucleicos/metabolismo , Proteolisis , Animales , Autofagia , Humanos , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...