Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 182(4): 1946-1965, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32005783

RESUMEN

Xyloglucan is the major hemicellulose of dicotyledon primary cell walls, affecting the load-bearing framework with the participation of xyloglucan endo-transglycosylase/hydrolases (XTHs). We used loss- and gain-of function approaches to study functions of XTH4 and XTH9 abundantly expressed in cambial regions during secondary growth of Arabidopsis (Arabidopsis thaliana). In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. They also stimulated secondary wall thickening but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition indicating an overall increase in secondary versus primary walls in mutants, indicative of higher xylem production compared with the wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers compared with the wild type was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed an intermediate number of layers. These changes correlated with specific Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers, where neither XTH4 nor XTH9 was expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and cell wall integrity sensing, including THESEUS1 and WALL ASSOCIATED KINASE2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan affects wood properties both directly and via cell wall integrity sensing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glucanos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Xilanos/metabolismo , Xilema/metabolismo
2.
Plant Biotechnol (Tokyo) ; 34(4): 203-206, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31275029

RESUMEN

Developing methods to efficiently convert lignocellulosic polymers, i.e. cellulose, hemicellulose, and lignin into user-friendly carbon resources, such as fermentable sugars, is critical for improving plant biomass utilization. Here, we report the identification of genes that increase enzymatic saccharification efficiency in cultured Arabidopsis wood cells. We overexpressed a set of genes that were upregulated during the early stages of in vitro xylem vessel cell differentiation, including transcription factor and CAZYme genes, in Arabidopsis and tested their effects on enzymatic saccharification efficiency. Of the 96 transgenic seedlings sampled, 37 and 17 lines showed significant increases and decreases in glucose yields, respectively. Further analysis of 20 overexpression lines with high glucose yields in seedling samples indicated that compared to wild type, the glucose and xylose yields from inflorescence stem samples were higher in lines overexpressing genes encoding BETA-XYLOSIDASE 2, UDP-GLUCOSYL TRANSFERASE 88A1, AT3G15350 (a class GT14 glycosyltransferase protein), and the Dof-type transcription factor Dof4.6, whose detailed molecular functions have not yet been characterized. No apparent defect in growth or inflorescence stem structure was detected in these overexpression lines. Therefore, these four genes might represent novel factors that can be used to increase saccharification efficiency in wood tissues without negatively affecting total biomass production. Furthermore, our results confirm the validity of our screening strategy for isolating factors related to the saccharification efficiency of lignocellulosic biomass.

3.
Sci Rep ; 5: 11848, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26143886

RESUMEN

Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our (13)C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the (13)C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the (13)C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in (13)C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components.


Asunto(s)
Lignina/química , Espectroscopía de Resonancia Magnética , Plantas/metabolismo , Soluciones/química , Isótopos de Carbono , Pared Celular/metabolismo , Dimetilsulfóxido/química , Lignina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/análisis , Populus/metabolismo , Pirimidinas/química
4.
Plant Cell Physiol ; 56(2): 242-54, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25265867

RESUMEN

The secondary cell walls of xylem cells, including vessel elements, provide mechanical strength and contribute to the conduction of water and minerals. VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a NAC-domain transcription factor that regulates the expression of genes required for xylem vessel element formation. Transient expression assays using 68 transcription factors that are expressed during xylem vessel differentiation showed that 14 transcription factors, including VND1-VND7, are putative positive regulators of VND7 expression. Electrophoretic mobility shift assays revealed that all seven VND proteins bound to the VND7 promoter region at its SMBE/TERE motif, indicating that VND7 is a direct target of all of the VND transcription factors. Overexpression of VND1-VND5, GATA12 and ANAC075, newly identified transcription factors that function upstream of VND7, resulted in ectopic xylem vessel element formation. These data suggest that VND7 transcription is a regulatory target of multiple classes of transcription factors.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Xilema/citología , Xilema/genética , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Pruebas de Enzimas , Redes Reguladoras de Genes , Genes de Plantas , Luciferasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Transcripción/genética , Regulación hacia Arriba
5.
Plant Sci ; 223: 8-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24767110

RESUMEN

Tolerance to soil acidity is an important trait for eucalyptus clones that are introduced to commercial forestry plantations in pacific Asian countries, where acidic soil is dominant in many locations. A conserved transcription factor regulating aluminum (Al) and proton (H⁺) tolerance in land-plant species, STOP1 (SENSITIVE TOPROTON RHIZOTOXICITY 1)-like protein, was isolated by polymerase chain reaction-based cloning, and then suppressed by RNA interference in hairy roots produced by Agrobacterium rhizogenes-mediated transformation. Eucalyptus STOP1-like protein complemented proton tolerance in an Arabidopsis thaliana stop1-mutant, and localized to the nucleus in a transient assay of a green fluorescent protein fusion protein expressed in tobacco leaves by Agrobacterium tumefaciens-mediated transformation. Genes encoding a citrate transporting MULTIDRUGS AND TOXIC COMPOUND EXTRUSION protein and an orthologue of ALUMINUM SENSITIVE 3 were suppressed in transgenic hairy roots in which the STOP1 orthologue was knocked down. In summary, we identified a series of genes for Al-tolerance in eucalyptus, including a gene for STOP1-like protein and the Al-tolerance genes it regulates. These genes may be useful for molecular breeding and genomic selection of elite clones to introduce into acid soil regions.


Asunto(s)
Adaptación Fisiológica/genética , Aluminio/toxicidad , Eucalyptus/genética , Eucalyptus/fisiología , Genes de Plantas , Proteínas de Plantas/metabolismo , Transcripción Genética/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Agrobacterium/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Citratos/metabolismo , Eucalyptus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
6.
Planta ; 237(4): 979-89, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23187679

RESUMEN

Many plant species excrete organic acids into the rhizosphere in response to aluminum stress to protect sensitive cells from aluminum rhizotoxicity. When the roots of Eucalyptus camaldulensis, a major source of pulp production, were incubated in aluminum-toxic medium, citrate released into the solution increased as a function of time. Citrate excretion was inducible by aluminum, but not by copper or sodium chloride stresses. This indicated that citrate is the major responsive organic acid released from the roots of this plant species to protect the root tips from aluminum damage. Four genes highly homologs to known citrate-transporting multidrugs and toxic compounds exclusion proteins, named EcMATE1-4, were isolated using polymerase chain reaction-based cloning techniques. Their predicted proteins included 12 membrane spanning domains, a common structural feature of citrate-transporting MATE proteins, and consisted of 502-579 amino acids with >60 % homology to orthologous genes in other plant species. One of the homologs, designated EcMATE1, was expressed in the roots more abundantly than in the shoots and in response to both Al and low pH stresses. Ectopic expression of EcMATE1 and 3 in tobacco hairy roots enhanced Al-responsive citrate excretion. Pharmacological characterization indicated that Al-responsive citrate excretion involved a protein phosphorylation/dephosphorylation process. These results indicate that citrate excretion through citrate-transporting multidrugs and toxic compounds exclusion proteins is one of the important aluminum-tolerance mechanisms in Eucalyptus camaldulensis.


Asunto(s)
Aluminio/toxicidad , Ácido Cítrico/metabolismo , Eucalyptus/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Ciclosporina , Eucalyptus/efectos de los fármacos , Toxinas Marinas , Datos de Secuencia Molecular , Proteínas de Transporte de Catión Orgánico/genética , Oxazoles , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Inhibidores de Proteínas Quinasas
7.
Plant Cell Rep ; 31(9): 1573-80, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22547095

RESUMEN

UNLABELLED: Secondary xylem is composed of daughter cells produced by the vascular cambium in the stem. Cell proliferation of the secondary xylem is the result of long-range cell division in the vascular cambium. Most xylem cells have a thickened secondary cell wall, representing a large amount of biomass storage. Therefore, regulation of cell division in the vascular cambium and differentiation into secondary xylem is important for biomass production. Cell division is regulated by cell cycle regulators. In this study, we confirm that cell cycle regulators influence cell division in the vascular cambium in tobacco. We produced transgenic tobacco that expresses Arabidopsis thaliana cyclin D2;1 (AtcycD2;1) and AtE2Fa-DPa under the control of the CaMV35S promoter. Each gene is a positive regulator of the cell cycle, and is known to influence the transition from G1 phase to S phase. AtcycD2;1-overexpressing tobacco had more secondary xylem cells when compared with control plants. In order to evaluate cell division activity in the vascular cambium, we prepared a Populus trichocarpa cycB1;1 (PtcycB1;1) promoter containing a destruction box motif for ubiquitination and a ß-glucuronidase-encoding gene (PtcycB1;1pro:GUS). In transgenic tobacco containing PtcycB1;1pro:GUS, GUS staining was specifically observed in meristem tissues, such as the root apical meristem and vascular cambium. In addition, mitosis-monitoring plants containing AtcycD2;1 had stronger GUS staining in the cambium when compared with control plants. Our results indicated that overexpression of AtcycD enhances cell division in the vascular cambium and increases secondary xylem differentiation in tobacco. KEY MESSAGE: We succeeded in inducing cell proliferation of cambium and enlargement of secondary xylem region by AtcycD overexpression. We also evaluated mitotic activity in cambium using cyclin-GUS fusion protein from poplar.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclinas/metabolismo , Nicotiana/citología , Nicotiana/genética , Xilema/citología , Proteínas de Arabidopsis/genética , Cámbium/citología , Cámbium/metabolismo , Proliferación Celular , Ciclinas/genética , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Fase G1 , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/metabolismo , Mitosis , Tallos de la Planta/citología , Tallos de la Planta/metabolismo , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fase S , Coloración y Etiquetado , Transfección , Xilema/metabolismo
8.
Plant Cell Environ ; 35(11): 2031-44, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22574770

RESUMEN

Rice internodes are vital for supporting high-yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell-producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5-phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.


Asunto(s)
Meristema/genética , Oryza/enzimología , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas de Plantas/fisiología , Actinas/metabolismo , Actinas/ultraestructura , Secuencia de Aminoácidos , División Celular/genética , Forma de la Célula , Pared Celular/metabolismo , Mapeo Cromosómico , Clonación Molecular , Inositol Polifosfato 5-Fosfatasas , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Pectinas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia
9.
J Plant Res ; 125(1): 1-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21874628

RESUMEN

Environmental stresses have adverse effects on plant growth and productivity, and are predicted to become more severe and widespread in decades to come. Especially, prolonged and repeated severe stresses affecting growth and development would bring down long-lasting effects in woody plants as a result of its long-term growth period. To counteract these effects, trees have evolved specific mechanisms for acclimation and tolerance to environmental stresses. Plant growth and development are regulated by the integration of many environmental and endogenous signals including plant hormones. Acclimation of land plants to environmental stresses is controlled by molecular cascades, also involving cross-talk with other stresses and plant hormone signaling mechanisms. This review focuses on recent studies on molecular mechanisms of abiotic stress responses in woody plants, functions of plant hormones in wood formation, and the interconnection of cell wall biosynthesis and the mechanisms shown above. Understanding of these mechanisms in depth should shed light on the factors for improvement of woody plants to overcome severe environmental stress conditions.


Asunto(s)
Ambiente , Desarrollo de la Planta , Estrés Fisiológico , Madera/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/genética , Estrés Fisiológico/genética , Transcripción Genética , Madera/citología , Madera/genética
10.
Plant J ; 67(3): 499-512, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21649762

RESUMEN

Wood harvested from trees is one of the most widely utilized natural materials on our planet. Recent environmental issues have prompted an increase in the demand for wood, especially as a cost-effective and renewable resource for industry and energy, so it is important to understand the process of wood formation. In the present study, we focused on poplar (Populus trichocarpa) NAC domain protein genes which are homologous to well-known Arabidopsis transcription factors regulating the differentiation of xylem vessels and fiber cells. From phylogenetic analysis, we isolated 16 poplar NAC domain protein genes, and named them PtVNS (VND-, NST/SND- and SMB-related proteins) genes. Expression analysis revealed that 12 PtVNS (also called PtrWND) genes including both VND and NST groups were expressed in developing xylem tissue and phloem fiber, whereas in primary xylem vessels, only PtVNS/PtrWND genes of the VND group were expressed. By using the post-translational induction system of Arabidopsis VND7, a master regulator of xylem vessel element differentiation, many poplar genes functioning in xylem vessel differentiation downstream from NAC domain protein genes were identified. Transient expression assays showed the variation in PtVNS/PtrWND transactivation activity toward downstream genes, even between duplicate gene pairs. Furthermore, overexpression of PtVNS/PtrWND genes induced ectopic secondary wall thickening in poplar leaves as well as in Arabidopsis seedlings with different levels of induction efficiency according to the gene. These results suggest that wood formation in poplar is regulated by cooperative functions of the NAC domain proteins.


Asunto(s)
Genes de Plantas , Populus/genética , Madera/crecimiento & desarrollo , Xilema/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Populus/citología , Populus/crecimiento & desarrollo , Populus/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Activación Transcripcional , Madera/citología , Xilema/citología , Xilema/crecimiento & desarrollo
11.
Plant Physiol ; 155(1): 399-413, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21057113

RESUMEN

Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.


Asunto(s)
Glucanos/metabolismo , Glicosiltransferasas/metabolismo , Hibridación Genética , Populus/enzimología , Populus/crecimiento & desarrollo , Madera/enzimología , Madera/crecimiento & desarrollo , Xilanos/metabolismo , Anticuerpos Monoclonales/metabolismo , Proliferación Celular , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Datos de Secuencia Molecular , Peso Molecular , Familia de Multigenes/genética , Filogenia , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Populus/citología , Populus/genética , Coloración y Etiquetado , Madera/citología , Madera/genética , Xilema/citología , Xilema/enzimología
12.
Plant Physiol ; 153(3): 906-14, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20488898

RESUMEN

We previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation. Here, we report a glucocorticoid-mediated posttranslational induction system of VND6 and VND7. In this system, VND6 or VND7 is expressed as a fused protein with the activation domain of the herpes virus VP16 protein and hormone-binding domain of the animal glucocorticoid receptor, and the protein's activity is induced by treatment with dexamethasone (DEX), a glucocorticoid derivative. Upon DEX treatment, transgenic Arabidopsis (Arabidopsis thaliana) plants carrying the chimeric gene exhibited transdifferentiation of various types of cells into xylem vessel elements, and the plants died. Many genes involved in xylem vessel differentiation, such as secondary wall biosynthesis and programmed cell death, were up-regulated in these plants after DEX treatment. Chemical analysis showed that xylan, a major hemicellulose component of the dicot secondary cell wall, was increased in the transgenic plants after DEX treatment. This induction system worked in poplar (Populus tremula x tremuloides) trees and in suspension cultures of cells from Arabidopsis and tobacco (Nicotiana tabacum); more than 90% of the tobacco BY-2 cells expressing VND7-VP16-GR transdifferentiated into xylem vessel elements after DEX treatment. These data demonstrate that the induction systems controlling VND6 and VND7 activities can be used as powerful tools for understanding xylem cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Transdiferenciación Celular/genética , Técnicas Genéticas , Xilema/citología , Xilema/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Transdiferenciación Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Dexametasona/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Populus/citología , Populus/efectos de los fármacos , Populus/genética , Biosíntesis de Proteínas/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/citología , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Xilema/efectos de los fármacos
13.
Planta ; 232(1): 257-70, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20424856

RESUMEN

The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/metabolismo , Genes de Plantas , Mutación , Oryza/genética , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
14.
Tree Physiol ; 29(12): 1599-606, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19910325

RESUMEN

We have investigated the spatial localization of enzymes that catalyze the sequential pathways of lignin biosynthesis in developing secondary xylem tissues of hybrid aspen (Populus sieboldii Miq. x Populus grandidentata Michx.) using immunohistochemical techniques. The enzymes phenylalanine ammonia-lyase, caffeic acid 3-O-methyltransferase and 4-coumarate:CoA ligase in the common phenylpropanoid pathway, cinnamyl-alcohol dehydrogenase (CAD) and peroxidase in the specific lignin pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) in the shikimate pathway and glutamine synthetase (GS) in the nitrogen reassimilation system were abundantly localized in the 6th to 9th wood fibers away from cambium; these wood fibers are likely undergoing the most intense lignification. Only weak immunolabeling of enzymes involved in the general phenylpropanoid and specific lignin pathways was detected in the cells near the cambium; lignification of these cells has likely been initiated after primary cell wall formation. In contrast, distinct localization of DAHPS and GS was observed around the cambium, which may be involved not only in lignin biosynthesis, but also in amino acid and protein synthesis, which are essential for cell survival. Our observations suggest that co-localization of enzymes related to the sequential shikimate, general phenylpropanoid and specific lignin branch pathways and to the nitrogen recycling system is associated with cell wall lignification of wood fibers during secondary xylem development.


Asunto(s)
Lignina/biosíntesis , Proteínas de Plantas/análisis , Populus/metabolismo , Xilema/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/análisis , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/fisiología , Oxidorreductasas de Alcohol/análisis , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/fisiología , Coenzima A Ligasas/análisis , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/fisiología , Glutamato-Amoníaco Ligasa/análisis , Glutamato-Amoníaco Ligasa/metabolismo , Glutamato-Amoníaco Ligasa/fisiología , Hibridación Genética , Inmunohistoquímica , Metiltransferasas/análisis , Metiltransferasas/metabolismo , Metiltransferasas/fisiología , Fenilanina Amoníaco-Liasa/análisis , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Populus/enzimología , Populus/genética , Xilema/enzimología , Xilema/crecimiento & desarrollo
15.
Plant Cell ; 21(4): 1155-65, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19383897

RESUMEN

Xylem vessel elements are hollow cellular units that assemble end-to-end to form a continuous vessel throughout the plant body; the xylem vessel is strengthened by the xylem elements' reinforced secondary cell walls (SCWs). This work aims to unravel the contribution of unknown actors in xylem vessel differentiation using the model in vitro cell culture system of Zinnia elegans differentiating cell cultures and the model in vivo system of Arabidopsis thaliana plants. Tracheary Element Differentiation-Related6 (TED6) and TED7 were selected based on an RNA interference (RNAi) screen in the Zinnia system. RNAi reduction of TED6 and 7 delayed tracheary element (TE) differentiation and co-overexpression of TED6 and 7 increased TE differentiation in cultured Zinnia cells. Arabidopsis TED6 and 7 were expressed preferentially in differentiating vessel elements in seedlings. Aberrant SCW formation of root vessel elements was induced by transient RNAi of At TED7 alone and enhanced by inhibition of both TED6 and 7. Protein-protein interactions were demonstrated between TED6 and a subunit of the SCW-related cellulose synthase complex. Our strategy has succeeded in finding two novel components in SCW formation and has opened the door for in-depth analysis of their molecular functions.


Asunto(s)
Arabidopsis/ultraestructura , Asteraceae/ultraestructura , Pared Celular/metabolismo , Proteínas de Plantas/fisiología , Xilema/ultraestructura , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Asteraceae/metabolismo , Asteraceae/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Xilema/crecimiento & desarrollo , Xilema/metabolismo
16.
Plant Cell Physiol ; 48(6): 843-55, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17504814

RESUMEN

Tension wood is a specialized tissue of deciduous trees that functions in bending woody stems to optimize their position in space. Tension wood fibers that develop on one side of the stem have an increased potency to shrink compared with fibers on the opposite side, thus creating a bending moment. It is believed that the gelatinous (G) cell wall layer containing almost pure cellulose of tension wood fibers is pivotal to their shrinking. By analyzing saccharide composition and linkage in isolated G-layers of poplar, we found that they contain some matrix components in addition to cellulose, of which xyloglucan is the most abundant. Xyloglucan, xyloglucan endo-transglycosylase (XET) activity and xyloglucan endo-transglycosylase/hydrolase (XTH) gene products were detected in developing G-layers by labeling using CCRC-M1 monoclonal antibody, in situ incorporation of XXXG-SR and the polyclonal antibody to poplar PttXET16-34, respectively, indicating that xyloglucan is incorporated into the G-layer during its development. Moreover, several XTH transcripts were altered and were generally up-regulated in developing tension wood compared with normal wood. In mature G-fibers, XTH gene products were detected in the G-layers while the XET activity was evident in the adjacent S(2) wall layer. We propose that XET activity is essential for G-fiber shrinking by repairing xyloglucan cross-links between G- and S(2)-layers and thus maintaining their contact. Surprisingly, XTH gene products and XET activity persisted in mature G-fibers for several years, suggesting that the enzyme functions after cell death repairing the cross-links as they are being broken during the shrinking process.


Asunto(s)
Glicosiltransferasas/metabolismo , Populus/enzimología , Madera/enzimología , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Populus/citología
17.
Plant Cell Rep ; 25(7): 676-88, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16496151

RESUMEN

Polysaccharide-linked hydroxycinnamoyl esters (PHEs) over-accumulate in the internodes of a rice (Oryza sativa L.) mutant, Fukei 71 (F71). This accumulation is accompanied by over-expression of phenylalanine ammonialyase (PAL). In this study, we show that only one member of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) family expresses in close correlation with PAL. Furthermore, substrate availability to DAHPS is promoted by down-regulating the expression of plastidic pyruvate kinase (PKp), a competitor of DAHPS. Since the over-production of PHEs is caused by D50 gene disruption, these results suggest that specific enzymes in the phenylpropanoid and shikimate pathways are coordinately up-regulated. In addition, the results indicate that carbon-flow into the shikimate pathway is modified for the synthesis of PHEs, and is probably controlled by D50.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Pared Celular/metabolismo , Ácidos Cumáricos/metabolismo , Ésteres/metabolismo , Oryza/citología , Oryza/enzimología , Polisacáridos/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , Secuencia de Aminoácidos , Pared Celular/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Oryza/genética , Filogenia
18.
Plant Physiol ; 140(3): 946-62, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16415215

RESUMEN

Over 1,600 genes encoding carbohydrate-active enzymes (CAZymes) in the Populus trichocarpa (Torr. & Gray) genome were identified based on sequence homology, annotated, and grouped into families of glycosyltransferases, glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, and expansins. Poplar (Populus spp.) had approximately 1.6 times more CAZyme genes than Arabidopsis (Arabidopsis thaliana). Whereas most families were proportionally increased, xylan and pectin-related families were underrepresented and the GT1 family of secondary metabolite-glycosylating enzymes was overrepresented in poplar. CAZyme gene expression in poplar was analyzed using a collection of 100,000 expressed sequence tags from 17 different tissues and compared to microarray data for poplar and Arabidopsis. Expression of genes involved in pectin and hemicellulose metabolism was detected in all tissues, indicating a constant maintenance of transcripts encoding enzymes remodeling the cell wall matrix. The most abundant transcripts encoded sucrose synthases that were specifically expressed in wood-forming tissues along with cellulose synthase and homologs of KORRIGAN and ELP1. Woody tissues were the richest source of various other CAZyme transcripts, demonstrating the importance of this group of enzymes for xylogenesis. In contrast, there was little expression of genes related to starch metabolism during wood formation, consistent with the preferential flux of carbon to cell wall biosynthesis. Seasonally dormant meristems of poplar showed a high prevalence of transcripts related to starch metabolism and surprisingly retained transcripts of some cell wall synthesis enzymes. The data showed profound changes in CAZyme transcriptomes in different poplar tissues and pointed to some key differences in CAZyme genes and their regulation between herbaceous and woody plants.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Enzimas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Populus/enzimología , Populus/genética , Arabidopsis/genética , Carbono/metabolismo , Pared Celular/metabolismo , Enzimas/clasificación , Enzimas/metabolismo , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Variación Genética , Genoma de Planta , Modelos Biológicos , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Estaciones del Año , Almidón/metabolismo , Sacarosa/metabolismo
19.
Genes Dev ; 19(16): 1855-60, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16103214

RESUMEN

Land plants evolved xylem vessels to conduct water and nutrients, and to support the plant. Microarray analysis with a newly established Arabidopsis in vitro xylem vessel element formation system and promoter analysis revealed the possible involvement of some plant-specific NAC-domain transcription factors in xylem formation. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 can induce transdifferentiation of various cells into metaxylem- and protoxylem-like vessel elements, respectively, in Arabidopsis and poplar. A dominant repression of VND6 and VND7 specifically inhibits metaxylem and protoxylem vessel formation in roots, respectively. These findings suggest that these genes are transcription switches for plant metaxylem and protoxylem vessel formation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Diferenciación Celular/fisiología , Perfilación de la Expresión Génica , Meristema/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Fenotipo , Estructura Terciaria de Proteína/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología
20.
Plant Cell Rep ; 24(8): 487-93, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15838683

RESUMEN

Both polysaccharide-linked hydroxycinnamoyl esters (PHEs) and lignin are biosynthesized via the phenylpropanoid pathway. In the abnormal internode parenchyma of the rice (Oryza sativa L.) mutant Fukei 71, which has a defective recessive gene (d50), the biosynthesis of lignin and PHEs differs. . The polysaccharide-linked ferulate and p-coumarate have been shown to accumulate to high levels in the irregularly shaped and collapsed internode parenchyma cells of Fukei 71 without an accompanying overaccumulation of lignin as a result of the defective d50 gene. In the present study we demonstrated that in this abnormal parenchyma tissue of Fukei 71 the expression of phenylalanine ammonia lyase (PAL) and glutamine synthetase (GS) were ectopically induced with the ectopic accumulation of PHEs, suggesting that the d50 gene may play a role as a controlling element in the biosynthesis of PHEs during cell-wall formation in the grasses.


Asunto(s)
Oryza/enzimología , Fenilanina Amoníaco-Liasa/metabolismo , Polisacáridos/metabolismo , Secuencia de Bases , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Cartilla de ADN , Ésteres , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Inmunohistoquímica , Fenilanina Amoníaco-Liasa/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...